Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Metab ; 85: 101931, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38796310

RESUMO

OBJECTIVE: Simultaneous activation of ß2- and ß3-adrenoceptors (ARs) improves whole-body metabolism via beneficial effects in skeletal muscle and brown adipose tissue (BAT). Nevertheless, high-efficacy agonists simultaneously targeting these receptors whilst limiting activation of ß1-ARs - and thus inducing cardiovascular complications - are currently non-existent. Therefore, we here developed and evaluated the therapeutic potential of a novel ß2-and ß3-AR, named ATR-127, for the treatment of obesity and its associated metabolic perturbations in preclinical models. METHODS: In the developmental phase, we assessed the impact of ATR-127's on cAMP accumulation in relation to the non-selective ß-AR agonist isoprenaline across various rodent ß-AR subtypes, including neonatal rat cardiomyocytes. Following these experiments, L6 muscle cells were stimulated with ATR-127 to assess the impact on GLUT4-mediated glucose uptake and intramyocellular cAMP accumulation. Additionally, in vitro, and in vivo assessments are conducted to measure ATR-127's effects on BAT glucose uptake and thermogenesis. Finally, diet-induced obese mice were treated with 5 mg/kg ATR-127 for 21 days to investigate the effects on glucose homeostasis, body weight, fat mass, skeletal muscle glucose uptake, BAT thermogenesis and hepatic steatosis. RESULTS: Exposure of L6 muscle cells to ATR-127 robustly enhanced GLUT4-mediated glucose uptake despite low intramyocellular cAMP accumulation. Similarly, ATR-127 markedly increased BAT glucose uptake and thermogenesis both in vitro and in vivo. Prolonged treatment of diet-induced obese mice with ATR-127 dramatically improved glucose homeostasis, an effect accompanied by decreases in body weight and fat mass. These effects were paralleled by an enhanced skeletal muscle glucose uptake, BAT thermogenesis, and improvements in hepatic steatosis. CONCLUSIONS: Our results demonstrate that ATR-127 is a highly effective, novel ß2- and ß3-ARs agonist holding great therapeutic promise for the treatment of obesity and its comorbidities, whilst potentially limiting cardiovascular complications. As such, the therapeutic effects of ATR-127 should be investigated in more detail in clinical studies.


Assuntos
Tecido Adiposo Marrom , Camundongos Endogâmicos C57BL , Músculo Esquelético , Animais , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Masculino , Ratos , Obesidade/metabolismo , Obesidade/tratamento farmacológico , Fígado Gorduroso/metabolismo , Fígado Gorduroso/tratamento farmacológico , Termogênese/efeitos dos fármacos , Agonistas Adrenérgicos/farmacologia
2.
Nat Commun ; 14(1): 173, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635304

RESUMO

ß2-agonist treatment improves skeletal muscle glucose uptake and whole-body glucose homeostasis in rodents, likely via mTORC2-mediated signalling. However, human data on this topic is virtually absent. We here investigate the effects of two-weeks treatment with the ß2-agonist clenbuterol (40 µg/day) on glucose control as well as energy- and substrate metabolism in healthy young men (age: 18-30 years, BMI: 20-25 kg/m2) in a randomised, placebo-controlled, double-blinded, cross-over study (ClinicalTrials.gov-identifier: NCT03800290). Randomisation occurred by controlled randomisation and the final allocation sequence was seven (period 1: clenbuterol, period 2: placebo) to four (period 1: placebo, period 2: clenbuterol). The primary and secondary outcome were peripheral insulin-stimulated glucose disposal and skeletal muscle GLUT4 translocation, respectively. Primary analyses were performed on eleven participants. No serious adverse events were reported. The study was performed at Maastricht University, Maastricht, The Netherlands, between August 2019 and April 2021. Clenbuterol treatment improved peripheral insulin-stimulated glucose disposal by 13% (46.6 ± 3.5 versus 41.2 ± 2.7 µmol/kg/min, p = 0.032), whereas skeletal muscle GLUT4 translocation assessed in overnight fasted muscle biopsies remained unaffected. These results highlight the potential of ß2-agonist treatment in improving skeletal muscle glucose uptake and underscore the therapeutic value of this pathway for the treatment of type 2 diabetes. However, given the well-known (cardiovascular) side-effects of systemic ß2-agonist treatment, further exploration on the underlying mechanisms is needed to identify viable therapeutic targets.


Assuntos
Clembuterol , Diabetes Mellitus Tipo 2 , Masculino , Humanos , Adolescente , Adulto Jovem , Adulto , Glucose/metabolismo , Clembuterol/farmacologia , Clembuterol/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Estudos Cross-Over , Músculo Esquelético/metabolismo
3.
Diabetologia ; 65(10): 1710-1720, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35871650

RESUMO

AIMS/HYPOTHESIS: Time-restricted eating (TRE) is suggested to improve metabolic health by limiting food intake to a defined time window, thereby prolonging the overnight fast. This prolonged fast is expected to lead to a more pronounced depletion of hepatic glycogen stores overnight and might improve insulin sensitivity due to an increased need to replenish nutrient storage. Previous studies showed beneficial metabolic effects of 6-8 h TRE regimens in healthy, overweight adults under controlled conditions. However, the effects of TRE on glucose homeostasis in individuals with type 2 diabetes are unclear. Here, we extensively investigated the effects of TRE on hepatic glycogen levels and insulin sensitivity in individuals with type 2 diabetes. METHODS: Fourteen adults with type 2 diabetes (BMI 30.5±4.2 kg/m2, HbA1c 46.1±7.2 mmol/mol [6.4±0.7%]) participated in a 3 week TRE (daily food intake within 10 h) vs control (spreading food intake over ≥14 h) regimen in a randomised, crossover trial design. The study was performed at Maastricht University, the Netherlands. Eligibility criteria included diagnosis of type 2 diabetes, intermediate chronotype and absence of medical conditions that could interfere with the study execution and/or outcome. Randomisation was performed by a study-independent investigator, ensuring that an equal amount of participants started with TRE and CON. Due to the nature of the study, neither volunteers nor investigators were blinded to the study interventions. The quality of the data was checked without knowledge on intervention allocation. Hepatic glycogen levels were assessed with 13C-MRS and insulin sensitivity was assessed using a hyperinsulinaemic-euglycaemic two-step clamp. Furthermore, glucose homeostasis was assessed with 24 h continuous glucose monitoring devices. Secondary outcomes included 24 h energy expenditure and substrate oxidation, hepatic lipid content and skeletal muscle mitochondrial capacity. RESULTS: Results are depicted as mean ± SEM. Hepatic glycogen content was similar between TRE and control condition (0.15±0.01 vs 0.15±0.01 AU, p=0.88). M value was not significantly affected by TRE (19.6±1.8 vs 17.7±1.8 µmol kg-1 min-1 in TRE vs control, respectively, p=0.10). Hepatic and peripheral insulin sensitivity also remained unaffected by TRE (p=0.67 and p=0.25, respectively). Yet, insulin-induced non-oxidative glucose disposal was increased with TRE (non-oxidative glucose disposal 4.3±1.1 vs 1.5±1.7 µmol kg-1 min-1, p=0.04). TRE increased the time spent in the normoglycaemic range (15.1±0.8 vs 12.2±1.1 h per day, p=0.01), and decreased fasting glucose (7.6±0.4 vs 8.6±0.4 mmol/l, p=0.03) and 24 h glucose levels (6.8±0.2 vs 7.6±0.3 mmol/l, p<0.01). Energy expenditure over 24 h was unaffected; nevertheless, TRE decreased 24 h glucose oxidation (260.2±7.6 vs 277.8±10.7 g/day, p=0.04). No adverse events were reported that were related to the interventions. CONCLUSIONS/INTERPRETATION: We show that a 10 h TRE regimen is a feasible, safe and effective means to improve 24 h glucose homeostasis in free-living adults with type 2 diabetes. However, these changes were not accompanied by changes in insulin sensitivity or hepatic glycogen. TRIAL REGISTRATION: ClinicalTrials.gov NCT03992248 FUNDING: ZonMW, 459001013.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Adulto , Glicemia/metabolismo , Automonitorização da Glicemia , Estudos Cross-Over , Diabetes Mellitus Tipo 2/metabolismo , Glucose , Homeostase , Humanos , Insulina/metabolismo , Resistência à Insulina/fisiologia , Lipídeos , Glicogênio Hepático
4.
Am J Physiol Endocrinol Metab ; 320(3): E619-E628, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33522400

RESUMO

Prolonged supplementation with the ß2-agonist clenbuterol improves glucose homeostasis in diabetic rodents, likely via ß2-adrenoceptor (ß2-AR)-mediated effects in the skeletal muscle and liver. However, since rodents have, in contrast to-especially diabetic-humans, substantial quantities of brown adipose tissue (BAT) and clenbuterol has affinity to ß1- and ß3-ARs, the contribution of BAT to these improvements is unclear. Therefore, we investigated clenbuterol-mediated improvements in glucose homeostasis in uncoupling protein 1-deficient (UCP1-/-) mice, lacking thermogenic BAT, versus wild-type (WT) mice. Anesthetized WT and UCP1-/- C57Bl/6 mice were injected with saline or clenbuterol and whole body oxygen consumption was measured. Furthermore, male WT and UCP1-/- C57Bl/6 mice were subjected to 17-wk of chow feeding, high-fat feeding, or high-fat feeding with clenbuterol treatment between weeks 13 and 17. Body composition was measured weekly with MRI. Oral glucose tolerance and insulin tolerance tests were performed in week 15 and 17, respectively. Clenbuterol increased oxygen consumption approximately twofold in WT mice. This increase was blunted in UCP1-/- mice, indicating clenbuterol-mediated activation of BAT thermogenesis. High-fat feeding induced diabetogenic phenotypes in both genotypes. However, low-dose clenbuterol treatment for 2 wk significantly reduced fasting blood glucose by 12.9% in WT and 14.8% in UCP1-/- mice. Clenbuterol treatment improved glucose and insulin tolerance in both genotypes compared with HFD controls and normalized to chow-fed control mice independent of body mass and composition alterations. Clenbuterol improved whole body glucose homeostasis independent of UCP1. Given the low human abundancy of BAT, ß2-AR agonist treatment provides a potential novel route for glucose disposal in diabetic humans.NEW & NOTEWORTHY Improvements in whole body glucose homeostasis of rodents upon prolonged ß2-adrenergic agonist supplementation could potentially be attributed to UCP1-mediated BAT thermogenesis. Indeed, we show that acute injection with the ß2-AR agonist clenbuterol induces BAT activation in mice. However, we also demonstrate that prolonged clenbuterol supplementation robustly improves whole body glucose and insulin tolerance in a similar way in both DIO WT and UCP1-/- mice, indicating that ß2-AR agonist supplementation improves whole body glucose homeostasis independent of UCP1-mediated BAT thermogenesis.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/administração & dosagem , Glucose/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Proteína Desacopladora 1/genética , Tecido Adiposo Marrom/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Animais , Clembuterol/administração & dosagem , Clembuterol/farmacologia , Dieta Hiperlipídica , Esquema de Medicação , Intolerância à Glucose/tratamento farmacológico , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Homeostase/genética , Resistência à Insulina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Obesidade/etiologia , Obesidade/patologia , Receptores Adrenérgicos beta 2/metabolismo , Termogênese/efeitos dos fármacos , Termogênese/genética , Fatores de Tempo , Proteína Desacopladora 1/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...