Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Stem Cell Res ; 77: 103442, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38739972

RESUMO

Intellectual disability (ID) is a diverse neurodevelopmental condition and almost half of the cases have a genetic etiology. SGIP1 acts as an endocytic protein that influences the signaling of receptors in neuronal systems related to energy homeostasis through its interaction with endophilins. This study focuses on the generation and characterization of induced pluripotent stem cells (iPSC) from two unrelated patients due to a frameshift variant (c.764dupA, NM_032291.4) and a splice donor site variant (c.74 + 1G > A, NM_032291.4) in the SGIP1 gene.


Assuntos
Homozigoto , Células-Tronco Pluripotentes Induzidas , Deficiência Intelectual , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Masculino , Feminino , Linhagem Celular , Criança
2.
HGG Adv ; 4(3): 100200, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37216008

RESUMO

Split-hand/foot malformation (SHFM) is a congenital limb defect most typically presenting with median clefts in hands and/or feet, that can occur in a syndromic context as well as in isolated form. SHFM is caused by failure to maintain normal apical ectodermal ridge function during limb development. Although several genes and contiguous gene syndromes are implicated in the monogenic etiology of isolated SHFM, the disorder remains genetically unexplained for many families and associated genetic loci. We describe a family with isolated X-linked SHFM, for which the causative variant could be detected after a diagnostic journey of 20 years. We combined well-established approaches including microarray-based copy number variant analysis and fluorescence in situ hybridization coupled with optical genome mapping and whole genome sequencing. This strategy identified a complex structural variant (SV) comprising a 165-kb gain of 15q26.3 material ([GRCh37/hg19] chr15:99795320-99960362dup) inserted in inverted position at the site of a 38-kb deletion on Xq27.1 ([GRCh37/hg19] chrX:139481061-139518989del). In silico analysis suggested that the SV disrupts the regulatory framework on the X chromosome and may lead to SOX3 misexpression. We hypothesize that SOX3 dysregulation in the developing limb disturbed the fine balance between morphogens required for maintaining AER function, resulting in SHFM in this family.


Assuntos
Deformidades Congênitas dos Membros , Humanos , Hibridização in Situ Fluorescente , Deformidades Congênitas dos Membros/genética , Loci Gênicos , Fatores de Transcrição SOXB1/genética
3.
Hum Mutat ; 43(7): 900-918, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35344616

RESUMO

Robinow syndrome is characterized by a triad of craniofacial dysmorphisms, disproportionate-limb short stature, and genital hypoplasia. A significant degree of phenotypic variability seems to correlate with different genes/loci. Disturbances of the noncanonical WNT-pathway have been identified as the main cause of the syndrome. Biallelic variants in ROR2 cause an autosomal recessive form of the syndrome with distinctive skeletal findings. Twenty-two patients with a clinical diagnosis of autosomal recessive Robinow syndrome were screened for variants in ROR2 using multiple molecular approaches. We identified 25 putatively pathogenic ROR2 variants, 16 novel, including single nucleotide variants and exonic deletions. Detailed phenotypic analyses revealed that all subjects presented with a prominent forehead, hypertelorism, short nose, abnormality of the nasal tip, brachydactyly, mesomelic limb shortening, short stature, and genital hypoplasia in male patients. A total of 19 clinical features were present in more than 75% of the subjects, thus pointing to an overall uniformity of the phenotype. Disease-causing variants in ROR2, contribute to a clinically recognizable autosomal recessive trait phenotype with multiple skeletal defects. A comprehensive quantitative clinical evaluation of this cohort delineated the phenotypic spectrum of ROR2-related Robinow syndrome. The identification of exonic deletion variant alleles further supports the contention of a loss-of-function mechanism in the etiology of the syndrome.


Assuntos
Anormalidades Craniofaciais , Nanismo , Deformidades Congênitas dos Membros , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase , Anormalidades Urogenitais , Anormalidades Craniofaciais/diagnóstico , Anormalidades Craniofaciais/genética , Nanismo/diagnóstico , Nanismo/genética , Genes Recessivos , Humanos , Deformidades Congênitas dos Membros/diagnóstico , Deformidades Congênitas dos Membros/genética , Masculino , Fenótipo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Anormalidades Urogenitais/diagnóstico , Anormalidades Urogenitais/genética
4.
Am J Hum Genet ; 105(5): 1048-1056, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31668703

RESUMO

NTNG2 encodes netrin-G2, a membrane-anchored protein implicated in the molecular organization of neuronal circuitry and synaptic organization and diversification in vertebrates. In this study, through a combination of exome sequencing and autozygosity mapping, we have identified 16 individuals (from seven unrelated families) with ultra-rare homozygous missense variants in NTNG2; these individuals present with shared features of a neurodevelopmental disorder consisting of global developmental delay, severe to profound intellectual disability, muscle weakness and abnormal tone, autistic features, behavioral abnormalities, and variable dysmorphisms. The variants disrupt highly conserved residues across the protein. Functional experiments, including in silico analysis of the protein structure, in vitro assessment of cell surface expression, and in vitro knockdown, revealed potential mechanisms of pathogenicity of the variants, including loss of protein function and decreased neurite outgrowth. Our data indicate that appropriate expression of NTNG2 plays an important role in neurotypical development.


Assuntos
Proteínas Ligadas por GPI/genética , Mutação de Sentido Incorreto/genética , Netrinas/genética , Transtornos do Neurodesenvolvimento/genética , Adolescente , Adulto , Criança , Pré-Escolar , Exoma/genética , Feminino , Homozigoto , Humanos , Deficiência Intelectual/genética , Masculino , Linhagem , Sequenciamento do Exoma/métodos , Adulto Jovem
5.
Clin Chem ; 65(10): 1295-1306, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31375477

RESUMO

BACKGROUND: Many muscular dystrophies currently remain untreatable. Recently, dietary ribitol has been suggested as a treatment for cytidine diphosphate (CDP)-l-ribitol pyrophosphorylase A (CRPPA, ISPD), fukutin (FKTN), and fukutin-related protein (FKRP) myopathy, by raising CDP-ribitol concentrations. Thus, to facilitate fast diagnosis, treatment development, and treatment monitoring, sensitive detection of CDP-ribitol is required. METHODS: An LC-MS method was optimized for CDP-ribitol in human and mice cells and tissues. RESULTS: CDP-ribitol, the product of CRPPA, was detected in all major human and mouse tissues. Moreover, CDP-ribitol concentrations were reduced in fibroblasts and skeletal muscle biopsies from patients with CRPPA myopathy, showing that CDP-ribitol could serve as a diagnostic marker to identify patients with CRPPA with severe Walker-Warburg syndrome and mild limb-girdle muscular dystrophy (LGMD) phenotypes. A screen for potentially therapeutic monosaccharides revealed that ribose, in addition to ribitol, restored CDP-ribitol concentrations and the associated O-glycosylation defect of α-dystroglycan. As the effect occurred in a mutation-dependent manner, we established a CDP-ribitol blood test to facilitate diagnosis and predict individualized treatment response. Ex vivo incubation of blood cells with ribose or ribitol restored CDP-ribitol concentrations in a patient with CRPPA LGMD. CONCLUSIONS: Sensitive detection of CDP-ribitol with LC-MS allows fast diagnosis of patients with severe and mild CRPPA myopathy. Ribose offers a readily testable dietary therapy for CRPPA myopathy, with possible applicability for patients with FKRP and FKTN myopathy. Evaluation of CDP-ribitol in blood is a promising tool for the evaluation and monitoring of dietary therapies for CRPPA myopathy in a patient-specific manner.


Assuntos
Monitoramento de Medicamentos/métodos , Distrofias Musculares/sangue , Distrofias Musculares/tratamento farmacológico , Açúcares de Nucleosídeo Difosfato/sangue , Animais , Cromatografia Líquida , Suplementos Nutricionais , Distroglicanas , Feminino , Glicosilação , Células HEK293 , Humanos , Masculino , Espectrometria de Massas , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Distrofias Musculares/patologia , Mutação , Açúcares de Nucleosídeo Difosfato/análise , Nucleotidiltransferases/genética , Ribitol/farmacologia , Ribose/farmacologia
6.
Eur J Hum Genet ; 27(7): 1101-1112, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30850703

RESUMO

We aimed to identify novel deletions and variants of TP63 associated with orofacial clefting (OFC). Copy number variants were assessed in three OFC families using microarray analysis. Subsequently, we analyzed TP63 in a cohort of 1072 individuals affected with OFC and 706 population-based controls using molecular inversion probes (MIPs). We identified partial deletions of TP63 in individuals from three families affected with OFC. In the OFC cohort, we identified several TP63 variants predicting to cause loss-of-function alleles, including a frameshift variant c.569_576del (p.(Ala190Aspfs*5)) and a nonsense variant c.997C>T (p.(Gln333*)) that introduces a premature stop codon in the DNA-binding domain. In addition, we identified the first missense variants in the oligomerization domain c.1213G>A (p.(Val405Met)), which occurred in individuals with OFC. This variant was shown to abrogate oligomerization of mutant p63 protein into oligomeric complexes, and therefore likely represents a loss-of-function allele rather than a dominant-negative. All of these variants were inherited from an unaffected parent, suggesting reduced penetrance of such loss-of-function alleles. Our data indicate that loss-of-function alleles in TP63 can also give rise to OFC as the main phenotype. We have uncovered the dosage-dependent functions of p63, which were previously rejected.


Assuntos
Alelos , Sequência de Bases , Fenda Labial/genética , Fissura Palatina/genética , Mutação com Perda de Função , Deleção de Sequência , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Adulto , Substituição de Aminoácidos , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto
7.
Genet Med ; 21(5): 1199-1208, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30287925

RESUMO

PURPOSE: To characterize new molecular factors implicated in a hereditary congenital facial paresis (HCFP) family and otosclerosis. METHODS: We performed exome sequencing in a four-generation family presenting nonprogressive HCFP and mixed hearing loss (HL). MEPE was analyzed using either Sanger sequencing or molecular inversion probes combined with massive parallel sequencing in 89 otosclerosis families, 1604 unrelated affected subjects, and 1538 unscreened controls. RESULTS: Exome sequencing in the HCFP family led to the identification of a rare segregating heterozygous frameshift variant p.(Gln425Lysfs*38) in MEPE. As the HL phenotype in this family resembled otosclerosis, we performed variant burden and variance components analyses in a large otosclerosis cohort and demonstrated that nonsense and frameshift MEPE variants were significantly enriched in affected subjects (p = 0.0006-0.0060). CONCLUSION: MEPE exerts its function in bone homeostasis by two domains, an RGD and an acidic serine aspartate-rich MEPE-associated (ASARM) motif inhibiting respectively bone resorption and mineralization. All variants associated with otosclerosis are predicted to result in nonsense mediated decay or an ASARM-and-RGD-truncated MEPE. The HCFP variant is predicted to produce an ASARM-truncated MEPE with an intact RGD motif. This difference in effect on the protein corresponds with the presumed pathophysiology of both diseases, and provides a plausible molecular explanation for the distinct phenotypic outcome.


Assuntos
Proteínas da Matriz Extracelular/genética , Paralisia Facial/congênito , Glicoproteínas/genética , Otosclerose/genética , Fosfoproteínas/genética , Adulto , Osso e Ossos/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Paralisia Facial/etiologia , Paralisia Facial/genética , Paralisia Facial/metabolismo , Família , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/genética , Variação Genética/genética , Glicoproteínas/metabolismo , Perda Auditiva/genética , Heterozigoto , Humanos , Masculino , Linhagem , Fenótipo , Fosfoproteínas/metabolismo , Sequenciamento do Exoma/métodos
9.
Cereb Cortex ; 28(3): 833-851, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28108491

RESUMO

The prefrontal cortex (PFC) is one of the latest brain regions to mature, which allows the acquisition of complex cognitive abilities through experience. To unravel the underlying gene expression changes during postnatal development, we performed RNA-sequencing (RNA-seq) in the rat medial PFC (mPFC) at five developmental time points from infancy to adulthood, and analyzed the differential expression of protein-coding genes, long intergenic noncoding RNAs (lincRNAs), and alternative exons. We showed that most expression changes occur in infancy, and that the number of differentially expressed genes reduces toward adulthood. We observed 137 differentially expressed lincRNAs and 796 genes showing alternative exon usage during postnatal development. Importantly, we detected a genetic switch from neuronal network establishment in infancy to maintenance of neural networks in adulthood based on gene expression dynamics, involving changes in protein-coding and lincRNA gene expression as well as alternative exon usage. Our gene expression datasets provide insights into the multifaceted transcriptional regulation of the developing PFC. They can be used to study the basic developmental processes of the mPFC and to understand the mechanisms of neurodevelopmental and neuropsychiatric disorders. Our study provides an important contribution to the ongoing efforts to complete the "brain map", and to the understanding of PFC development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/crescimento & desenvolvimento , Fatores Etários , Animais , Animais Recém-Nascidos , Perfilação da Expressão Gênica , Ontologia Genética , Estudo de Associação Genômica Ampla , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ratos , Ratos Wistar
10.
Am J Med Genet A ; 173(7): 1813-1820, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28513979

RESUMO

The cardinal features of Ectrodactyly, Ectodermal dysplasia, Cleft lip/palate (EEC), and Ankyloblepharon-Ectodermal defects-Cleft lip/palate (AEC) syndromes are ectodermal dysplasia (ED), orofacial clefting, and limb anomalies. EEC and AEC are caused by heterozygous mutations in the transcription factor p63 encoded by TP63. Here, we report a patient with an EEC/AEC syndrome-like phenotype, including ankyloblepharon, ED, cleft palate, ectrodactyly, syndactyly, additional hypogammaglobulinemia, and growth delay. Neither pathogenic mutations in TP63 nor CNVs at the TP63 locus were identified. Exome sequencing revealed de novo heterozygous variants in CHUK (conserved helix-loop-helix ubiquitous kinase), PTGER4, and IFIT2. While the variant in PTGER4 might contribute to the immunodeficiency and growth delay, the variant in CHUK appeared to be most relevant for the EEC/AEC-like phenotype. CHUK is a direct target gene of p63 and encodes a component of the IKK complex that plays a key role in NF-κB pathway activation. The identified CHUK variant (g.101980394T>C; c.425A>G; p.His142Arg) is located in the kinase domain which is responsible for the phosphorylation activity of the protein. The variant may affect CHUK function and thus contribute to the disease phenotype in three ways: (1) the variant exhibits a dominant negative effect and results in an inactive IKK complex that affects the canonical NF-κB pathway; (2) it affects the feedback loop of the canonical and non-canonical NF-κB pathways that are CHUK kinase activity-dependent; and (3) it disrupts NF-κB independent epidermal development that is often p63-dependent. Therefore, we propose that the heterozygous CHUK variant is highly likely to be causative to the EEC/AEC-like and additional hypogammaglobulinemia phenotypes in the patient presented here.

11.
Genet Med ; 18(11): 1158-1162, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26963285

RESUMO

PURPOSE: We aimed to identify a novel genetic cause of tooth agenesis (TA) and/or orofacial clefting (OFC) by combining whole-exome sequencing (WES) and targeted resequencing in a large cohort of TA and OFC patients. METHODS: WES was performed in two unrelated patients: one with severe TA and OFC and another with severe TA only. After deleterious mutations were identified in a gene encoding low-density lipoprotein receptor-related protein 6 (LRP6), all its exons were resequenced with molecular inversion probes in 67 patients with TA, 1,072 patients with OFC, and 706 controls. RESULTS: We identified a frameshift (c.4594delG, p.Cys1532fs) and a canonical splice-site mutation (c.3398-2A>C, p.?) in LRP6, respectively, in the patient with TA and OFC and in the patient with severe TA only. The targeted resequencing showed significant enrichment of unique LRP6 variants in TA patients but not in nonsyndromic OFC patients. Of the five variants in patients with TA, two affected the canonical splice site and three were missense variants; all variants segregated with the dominant phenotype, and in one case the missense mutation occurred de novo. CONCLUSION: Mutations in LRP6 cause TA in humans.Genet Med 18 11, 1158-1162.


Assuntos
Anodontia/genética , Exoma/genética , Predisposição Genética para Doença , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Adolescente , Anodontia/patologia , Criança , Feminino , Mutação da Fase de Leitura/genética , Humanos , Masculino , Mutação de Sentido Incorreto/genética , Linhagem , Análise de Sequência de DNA , Via de Sinalização Wnt/genética
12.
Nat Commun ; 6: 7199, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-26068067

RESUMO

Möbius syndrome (MBS) is a neurological disorder that is characterized by paralysis of the facial nerves and variable other congenital anomalies. The aetiology of this syndrome has been enigmatic since the initial descriptions by von Graefe in 1880 and by Möbius in 1888, and it has been debated for decades whether MBS has a genetic or a non-genetic aetiology. Here, we report de novo mutations affecting two genes, PLXND1 and REV3L in MBS patients. PLXND1 and REV3L represent totally unrelated pathways involved in hindbrain development: neural migration and DNA translesion synthesis, essential for the replication of endogenously damaged DNA, respectively. Interestingly, analysis of Plxnd1 and Rev3l mutant mice shows that disruption of these separate pathways converge at the facial branchiomotor nucleus, affecting either motoneuron migration or proliferation. The finding that PLXND1 and REV3L mutations are responsible for a proportion of MBS patients suggests that de novo mutations in other genes might account for other MBS patients.


Assuntos
Moléculas de Adesão Celular Neuronais/genética , Proteínas de Ligação a DNA/genética , DNA Polimerase Dirigida por DNA/genética , Síndrome de Möbius/genética , Mutação , Animais , Dano ao DNA , Exoma , Heterozigoto , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Glicoproteínas de Membrana , Camundongos , Camundongos Mutantes
13.
Neurology ; 84(21): 2177-82, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25934851

RESUMO

OBJECTIVE: To identify the underlying genetic defect in 5 patients from a consanguineous family with a Walker-Warburg phenotype, together with intracranial calcifications. METHODS: Homozygosity mapping and exome sequencing, followed by Sanger sequencing of the obtained candidate gene, was performed. Expression of the candidate gene was tested by reverse transcription PCR. Patient fibroblasts were converted to myotubes, and the expression and function of dystroglycan was tested by Western blotting. RESULTS: We detected a homozygous loss-of-function frameshift mutation in the DAG1 gene and showed that this mutation results in a complete absence of both α- and ß-dystroglycan. CONCLUSIONS: A loss-of-function mutation in DAG1 can result in Walker-Warburg syndrome and is not embryonic lethal.


Assuntos
Distroglicanas/deficiência , Distroglicanas/genética , Síndrome de Walker-Warburg/genética , Árabes/genética , Consanguinidade , Feminino , Mutação da Fase de Leitura , Humanos , Lactente , Recém-Nascido , Israel , Síndrome de Walker-Warburg/patologia
14.
Science ; 340(6131): 479-83, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23519211

RESUMO

Glycosylated α-dystroglycan (α-DG) serves as cellular entry receptor for multiple pathogens, and defects in its glycosylation cause hereditary Walker-Warburg syndrome (WWS). At least eight proteins are critical to glycosylate α-DG, but many genes mutated in WWS remain unknown. To identify modifiers of α-DG, we performed a haploid screen for Lassa virus entry, a hemorrhagic fever virus causing thousands of deaths annually that hijacks glycosylated α-DG to enter cells. In complementary screens, we profiled cells for absence of α-DG carbohydrate chains or biochemically related glycans. This revealed virus host factors and a suite of glycosylation units, including all known Walker-Warburg genes and five additional factors critical for the modification of α-DG. Our findings accentuate the complexity of this posttranslational feature and point out genes defective in dystroglycanopathies.


Assuntos
Distroglicanas/metabolismo , Interações Hospedeiro-Patógeno/genética , Febre Lassa/genética , Vírus Lassa/fisiologia , Proteínas de Membrana/genética , Proteoma/metabolismo , Internalização do Vírus , Síndrome de Walker-Warburg/genética , Sequência de Aminoácidos , Linhagem Celular , Feminino , Glicosilação , Haploidia , Humanos , Lactente , Febre Lassa/virologia , Masculino , Dados de Sequência Molecular , Mutação , Linhagem , Pentosiltransferases
15.
Hum Mol Genet ; 22(9): 1746-54, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23359570

RESUMO

Several known or putative glycosyltransferases are required for the synthesis of laminin-binding glycans on alpha-dystroglycan (αDG), including POMT1, POMT2, POMGnT1, LARGE, Fukutin, FKRP, ISPD and GTDC2. Mutations in these glycosyltransferase genes result in defective αDG glycosylation and reduced ligand binding by αDG causing a clinically heterogeneous group of congenital muscular dystrophies, commonly referred to as dystroglycanopathies. The most severe clinical form, Walker-Warburg syndrome (WWS), is characterized by congenital muscular dystrophy and severe neurological and ophthalmological defects. Here, we report two homozygous missense mutations in the ß-1,3-N-acetylglucosaminyltransferase 1 (B3GNT1) gene in a family affected with WWS. Functional studies confirmed the pathogenicity of the mutations. First, expression of wild-type but not mutant B3GNT1 in human prostate cancer (PC3) cells led to increased levels of αDG glycosylation. Second, morpholino knockdown of the zebrafish b3gnt1 orthologue caused characteristic muscular defects and reduced αDG glycosylation. These functional studies identify an important role of B3GNT1 in the synthesis of the uncharacterized laminin-binding glycan of αDG and implicate B3GNT1 as a novel causative gene for WWS.


Assuntos
Mutação de Sentido Incorreto , N-Acetilglucosaminiltransferases/genética , Síndrome de Walker-Warburg/genética , Animais , Linhagem Celular Tumoral , Mapeamento Cromossômico , Estudos de Coortes , Distroglicanas/metabolismo , Feminino , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Glicosilação , Homozigoto , Humanos , Lactente , Laminina/metabolismo , Masculino , Distrofia Muscular do Cíngulo dos Membros/genética , N-Acetilglucosaminiltransferases/metabolismo , Linhagem , Fenótipo , Ligação Proteica , Síndrome de Walker-Warburg/patologia , Peixe-Zebra/genética
16.
Nat Genet ; 44(5): 581-5, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22522421

RESUMO

Walker-Warburg syndrome (WWS) is an autosomal recessive multisystem disorder characterized by complex eye and brain abnormalities with congenital muscular dystrophy (CMD) and aberrant a-dystroglycan glycosylation. Here we report mutations in the ISPD gene (encoding isoprenoid synthase domain containing) as the second most common cause of WWS. Bacterial IspD is a nucleotidyl transferase belonging to a large glycosyltransferase family, but the role of the orthologous protein in chordates is obscure to date, as this phylum does not have the corresponding non-mevalonate isoprenoid biosynthesis pathway. Knockdown of ispd in zebrafish recapitulates the human WWS phenotype with hydrocephalus, reduced eye size, muscle degeneration and hypoglycosylated a-dystroglycan. These results implicate ISPD in a-dystroglycan glycosylation in maintaining sarcolemma integrity in vertebrates.


Assuntos
Distroglicanas/metabolismo , Mutação/genética , Síndrome de Walker-Warburg/genética , Peixe-Zebra/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Pré-Escolar , Embrião não Mamífero , Olho/metabolismo , Olho/patologia , Glicosilação , Humanos , Manosiltransferases/genética , Manosiltransferases/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Peixe-Zebra/embriologia
17.
PLoS Genet ; 7(7): e1002114, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21750680

RESUMO

Ophthalmo-acromelic syndrome (OAS), also known as Waardenburg Anophthalmia syndrome, is defined by the combination of eye malformations, most commonly bilateral anophthalmia, with post-axial oligosyndactyly. Homozygosity mapping and subsequent targeted mutation analysis of a locus on 14q24.2 identified homozygous mutations in SMOC1 (SPARC-related modular calcium binding 1) in eight unrelated families. Four of these mutations are nonsense, two frame-shift, and two missense. The missense mutations are both in the second Thyroglobulin Type-1 (Tg1) domain of the protein. The orthologous gene in the mouse, Smoc1, shows site- and stage-specific expression during eye, limb, craniofacial, and somite development. We also report a targeted pre-conditional gene-trap mutation of Smoc1 (Smoc1(tm1a)) that reduces mRNA to ∼10% of wild-type levels. This gene-trap results in highly penetrant hindlimb post-axial oligosyndactyly in homozygous mutant animals (Smoc1(tm1a/tm1a)). Eye malformations, most commonly coloboma, and cleft palate occur in a significant proportion of Smoc1(tm1a/tm1a) embryos and pups. Thus partial loss of Smoc-1 results in a convincing phenocopy of the human disease. SMOC-1 is one of the two mammalian paralogs of Drosophila Pentagone, an inhibitor of decapentaplegic. The orthologous gene in Xenopus laevis, Smoc-1, also functions as a Bone Morphogenic Protein (BMP) antagonist in early embryogenesis. Loss of BMP antagonism during mammalian development provides a plausible explanation for both the limb and eye phenotype in humans and mice.


Assuntos
Anoftalmia/genética , Proteína Morfogenética Óssea 1/antagonistas & inibidores , Mutação , Osteonectina , Síndrome de Waardenburg/genética , Animais , Proteína Morfogenética Óssea 1/genética , Coloboma/genética , Análise Mutacional de DNA , Extremidades/crescimento & desenvolvimento , Olho/crescimento & desenvolvimento , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Osteonectina/genética , Osteonectina/metabolismo , Linhagem , Sindactilia/genética , Xenopus laevis
18.
Am J Hum Genet ; 86(2): 254-61, 2010 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-20137777

RESUMO

Frank-Ter Haar syndrome (FTHS), also known as Ter Haar syndrome, is an autosomal-recessive disorder characterized by skeletal, cardiovascular, and eye abnormalities, such as increased intraocular pressure, prominent eyes, and hypertelorism. We have conducted homozygosity mapping on patients representing 12 FTHS families. A locus on chromosome 5q35.1 was identified for which patients from nine families shared homozygosity. For one family, a homozygous deletion mapped exactly to the smallest region of overlapping homozygosity, which contains a single gene, SH3PXD2B. This gene encodes the TKS4 protein, a phox homology (PX) and Src homology 3 (SH3) domain-containing adaptor protein and Src substrate. This protein was recently shown to be involved in the formation of actin-rich membrane protrusions called podosomes or invadopodia, which coordinate pericellular proteolysis with cell migration. Mice lacking Tks4 also showed pronounced skeletal, eye, and cardiac abnormalities and phenocopied the majority of the defects associated with FTHS. These findings establish a role for TKS4 in FTHS and embryonic development. Mutation analysis revealed five different homozygous mutations in SH3PXD2B in seven FTHS families. No SH3PXD2B mutations were detected in six other FTHS families, demonstrating the genetic heterogeneity of this condition. Interestingly however, dermal fibroblasts from one of the individuals without an SH3PXD2B mutation nevertheless expressed lower levels of the TKS4 protein, suggesting a common mechanism underlying disease causation.


Assuntos
Anormalidades Múltiplas/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Anormalidades do Olho/complicações , Cardiopatias Congênitas/complicações , Anormalidades Musculoesqueléticas/complicações , Mutação/genética , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas Adaptadoras de Transdução de Sinal/química , Sequência de Aminoácidos , Animais , Pré-Escolar , Mapeamento Cromossômico , Anormalidades do Olho/genética , Feminino , Inativação Gênica , Cardiopatias Congênitas/genética , Homozigoto , Humanos , Masculino , Camundongos , Dados de Sequência Molecular , Anormalidades Musculoesqueléticas/genética , Proteínas de Transferência de Fosfolipídeos/química , Síndrome
19.
Nat Genet ; 37(5): 465-7, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15821734

RESUMO

Feingold syndrome is characterized by variable combinations of esophageal and duodenal atresias, microcephaly, learning disability, syndactyly and cardiac defect. We show here that heterozygous mutations in the gene MYCN are present in Feingold syndrome. All mutations are predicted to disrupt both the full-length protein and a new shortened MYCN isoform, suggesting that multiple aspects of early embryogenesis and postnatal brain growth in humans are tightly regulated by MYCN dosage.


Assuntos
Encéfalo/anormalidades , Heterozigoto , Atresia Intestinal/genética , Proteínas Nucleares/genética , Proteínas Oncogênicas/genética , Análise Mutacional de DNA , Feminino , Dosagem de Genes , Humanos , Masculino , Mutação , Proteína Proto-Oncogênica N-Myc , Proteínas Nucleares/metabolismo , Proteínas Oncogênicas/metabolismo , Linhagem , Análise de Sequência de DNA
20.
Am J Hum Genet ; 71(5): 1033-43, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12369018

RESUMO

Walker-Warburg syndrome (WWS) is an autosomal recessive developmental disorder characterized by congenital muscular dystrophy and complex brain and eye abnormalities. A similar combination of symptoms is presented by two other human diseases, muscle-eye-brain disease (MEB) and Fukuyama congenital muscular dystrophy (FCMD). Although the genes underlying FCMD (Fukutin) and MEB (POMGnT1) have been cloned, loci for WWS have remained elusive. The protein products of POMGnT1 and Fukutin have both been implicated in protein glycosylation. To unravel the genetic basis of WWS, we first performed a genomewide linkage analysis in 10 consanguineous families with WWS. The results indicated the existence of at least three WWS loci. Subsequently, we adopted a candidate-gene approach in combination with homozygosity mapping in 15 consanguineous families with WWS. Candidate genes were selected on the basis of the role of the FCMD and MEB genes. Since POMGnT1 encodes an O-mannoside N-acetylglucosaminyltransferase, we analyzed the possible implication of O-mannosyl glycan synthesis in WWS. Analysis of the locus for O-mannosyltransferase 1 (POMT1) revealed homozygosity in 5 of 15 families. Sequencing of the POMT1 gene revealed mutations in 6 of the 30 unrelated patients with WWS. Of the five mutations identified, two are nonsense mutations, two are frameshift mutations, and one is a missense mutation. Immunohistochemical analysis of muscle from patients with POMT1 mutations corroborated the O-mannosylation defect, as judged by the absence of glycosylation of alpha-dystroglycan. The implication of O-mannosylation in MEB and WWS suggests new lines of study in understanding the molecular basis of neuronal migration.


Assuntos
Anormalidades Múltiplas/genética , Manosiltransferases/genética , Anormalidades Múltiplas/embriologia , Anormalidades Múltiplas/enzimologia , Encéfalo/anormalidades , Encéfalo/embriologia , Pré-Escolar , Mapeamento Cromossômico , Proteínas do Citoesqueleto/metabolismo , Análise Mutacional de DNA , Distroglicanas , Anormalidades do Olho/genética , Feminino , Morte Fetal , Glicosilação , Humanos , Imuno-Histoquímica , Lactente , Masculino , Glicoproteínas de Membrana/metabolismo , Dados de Sequência Molecular , Linhagem , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...