Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 13: 562, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31998077

RESUMO

The cholinergic system plays an essential role in central respiratory control, but the underlying mechanisms remain elusive. We used whole-cell recordings in brainstem slices from juvenile mice expressing enhanced green fluorescent protein (EGFP) under the control of the glycine transporter type 2 (GlyT2) promoter, to examine muscarinic modulation of morphologically identified glycinergic neurons in the preBötzinger complex (preBötC), an area critical for central inspiratory rhythm generation. Biocytin-filled reconstruction of glycinergic neurons revealed that the majority of them had few primary dendrites and had axons arborized within their own dendritic field. Few glycinergic neurons had axon collaterals extended towards the premotor/motor areas or ran towards the contralateral preBötC, and had more primary dendrites and more compact dendritic trees. Spontaneously active glycinergic neurons fired regular spikes, or less frequently in a "burst-like" pattern at physiological potassium concentration. Muscarine suppressed firing in the majority of regular spiking neurons via M2 receptor activation while enhancing the remaining neurons through M1 receptors. Interestingly, rhythmic bursting was augmented by muscarine in a small group of glycinergic neurons. In contrast to its heterogeneous modulation of glycinergic neuronal excitability, muscarine generally depressed inhibitory and excitatory synaptic inputs onto both glycinergic and non-glycinergic preBötC neurons, with a stronger effect on inhibitory input. Notably, presynaptic muscarinic attenuation of excitatory synaptic input was dependent on M1 receptors in glycinergic neurons and on M2 receptors in non-glycinergic neurons. Additional field potential recordings of excitatory synaptic potentials in the M2 receptor knockout mice indicate that glycinergic and non-glycinergic neurons contribute equally to the general suppression by muscarine of excitatory activity in preBötC circuits. In conclusion, our data show that preBötC glycinergic neurons are morphologically heterogeneous, and differ in the properties of synaptic transmission and muscarinic modulation in comparison to non-glycinergic neurons. The dominant and cell-type-specific muscarinic inhibition of synaptic neurotransmission and spiking may contribute to central respiratory disturbances in high cholinergic states.

2.
J Neurophysiol ; 99(6): 2916-28, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18385480

RESUMO

During an inspiration the output of hypoglossal (XII) motoneurons (HMs) in vitro is characterized by synchronous oscillatory firing in the 20- to 40-Hz range. To maintain synchronicity it is important that the cells fire with high reliability and precision. It is not known whether the intrinsic properties of HMs are tuned to maintain synchronicity when stimulated with time-varying inputs. We intracellularly recorded from HMs in an in vitro brain stem slice preparation from juvenile mice. Cells were held at or near spike threshold and were stimulated with steady or swept sine-wave current functions (10-s duration; 0- to 40-Hz range). Peristimulus time histograms were constructed from spike times based on threshold crossings. Synaptic transmission was suppressed by including blockers of GABAergic, glycinergic, and glutamatergic neurotransmission in the bath solution. Cells responded to sine-wave stimulation with bursts of action potentials at low (<3- to 5-Hz) sine-wave frequency, whereas they phase-locked 1:1 to the stimulus at intermediate frequencies (3-25 Hz). Beyond the 1:1 frequency range cells were able to phase-lock to subharmonics (1:2, 1:3, or 1:4) of the input frequency. The 1:1 phase-locking range increased with increasing stimulus amplitude and membrane depolarization. Reliability and spike-timing precision were highest when the cells phase-locked 1:1 to the stimulus. Our findings suggest that the coding of time-varying inspiratory synaptic inputs by individual HMs is most reliable and precise at frequencies that are generally lower than the frequency of the synchronous inspiratory oscillatory activity recorded from the XII nerve.


Assuntos
Potenciais de Ação/fisiologia , Nervo Hipoglosso/fisiologia , Neurônios Motores/fisiologia , Recrutamento Neurofisiológico/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Tronco Encefálico/citologia , Relação Dose-Resposta à Radiação , Estimulação Elétrica/métodos , Nervo Hipoglosso/efeitos dos fármacos , Técnicas In Vitro , Camundongos , Neurônios Motores/efeitos da radiação , Técnicas de Patch-Clamp/métodos , Recrutamento Neurofisiológico/efeitos da radiação , Transmissão Sináptica/fisiologia , Transmissão Sináptica/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...