Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Med ; 20(1): 395, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36352383

RESUMO

BACKGROUND: Myotonic dystrophy type 1 (DM1) is an incurable multisystem disease caused by a CTG-repeat expansion in the DM1 protein kinase (DMPK) gene. The OPTIMISTIC clinical trial demonstrated positive and heterogenous effects of cognitive behavioral therapy (CBT) on the capacity for activity and social participations in DM1 patients. Through a process of reverse engineering, this study aims to identify druggable molecular biomarkers associated with the clinical improvement in the OPTIMISTIC cohort. METHODS: Based on full blood samples collected during OPTIMISTIC, we performed paired mRNA sequencing for 27 patients before and after the CBT intervention. Linear mixed effect models were used to identify biomarkers associated with the disease-causing CTG expansion and the mean clinical improvement across all clinical outcome measures. RESULTS: We identified 608 genes for which their expression was significantly associated with the CTG-repeat expansion, as well as 1176 genes significantly associated with the average clinical response towards the intervention. Remarkably, all 97 genes associated with both returned to more normal levels in patients who benefited the most from CBT. This main finding has been replicated based on an external dataset of mRNA data of DM1 patients and controls, singling these genes out as candidate biomarkers for therapy response. Among these candidate genes were DNAJB12, HDAC5, and TRIM8, each belonging to a protein family that is being studied in the context of neurological disorders or muscular dystrophies. Across the different gene sets, gene pathway enrichment analysis revealed disease-relevant impaired signaling in, among others, insulin-, metabolism-, and immune-related pathways. Furthermore, evidence for shared dysregulations with another neuromuscular disease, Duchenne muscular dystrophy, was found, suggesting a partial overlap in blood-based gene dysregulation. CONCLUSIONS: DM1-relevant disease signatures can be identified on a molecular level in peripheral blood, opening new avenues for drug discovery and therapy efficacy assessments.


Assuntos
Distrofia Miotônica , Humanos , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Expressão Gênica , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , Distrofia Miotônica/terapia , Proteínas do Tecido Nervoso/genética , RNA Mensageiro/genética , Expansão das Repetições de Trinucleotídeos
2.
NAR Genom Bioinform ; 4(1): lqac016, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35274098

RESUMO

In patients with myotonic dystrophy type 1 (DM1), dysregulation of RNA-binding proteins like MBNL and CELF1 leads to alternative splicing of exons and is thought to induce a return to fetal splicing patterns in adult tissues, including the central nervous system (CNS). To comprehensively evaluate this, we created an atlas of developmentally regulated splicing patterns in the frontal cortex of healthy individuals and DM1 patients, by combining RNA-seq data from BrainSpan, GTEx and DM1 patients. Thirty-four splice events displayed an inclusion pattern in DM1 patients that is typical for the fetal situation in healthy individuals. The regulation of DM1-relevant splicing patterns could partly be explained by changes in mRNA expression of the splice regulators MBNL1, MBNL2 and CELF1. On the contrary, interindividual differences in splicing patterns between healthy adults could not be explained by differential expression of these splice regulators. Our findings lend transcriptome-wide evidence to the previously noted shift to fetal splicing patterns in the adult DM1 brain as a consequence of an imbalance in antagonistic MBNL and CELF1 activities. Our atlas serves as a solid foundation for further study and understanding of the cognitive phenotype in patients.

3.
Front Cell Dev Biol ; 10: 1051311, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36755664

RESUMO

Protein tyrosine phosphatases, together with protein tyrosine kinases, control many molecular signaling steps that control life at cellular and organismal levels. Impairing alterations in the genes encoding the involved proteins is expected to profoundly affect the quality of life-if compatible with life at all. Here, we review the current knowledge on the effects of germline variants that have been reported for genes encoding a subset of the protein tyrosine phosphatase superfamily; that of the thirty seven classical members. The conclusion must be that the newest genome research tools produced an avalanche of data that suggest 'guilt by association' for individual genes to specific disorders. Future research should face the challenge to investigate these accusations thoroughly and convincingly, to reach a mature genotype-phenotype map for this intriguing protein family.

4.
Methods Mol Biol ; 2056: 187-202, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31586349

RESUMO

Aberrant RNA structure plays a central role in the molecular mechanisms guided by repeat RNAs in diseases like myotonic dystrophy (DM), C9orf72-linked amyotrophic lateral sclerosis (ALS) and fragile X tremor/ataxia syndrome (FXTAS). Much knowledge remains to be gained about how these repeat-expanded transcripts are actually folded, especially regarding the properties specific to very long and interrupted repeats. RNA structure can be interrogated by chemical as well as enzymatic probes. These probes usually bind or cleave single-stranded nucleotides, which can subsequently be detected using reverse transcriptase primer extension. In this chapter, we describe methodology for in vitro synthesis and structure probing of expanded CUG repeat RNAs associated with DM type 1 and approaches for the associated data analysis.


Assuntos
Distrofia Miotônica/genética , Miotonina Proteína Quinase/genética , RNA/química , Repetições de Trinucleotídeos , Humanos , Técnicas In Vitro , Modelos Moleculares , Conformação de Ácido Nucleico , Expansão das Repetições de Trinucleotídeos
5.
Int J Mol Sci ; 20(22)2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31766224

RESUMO

The congenital form of myotonic dystrophy type 1 (cDM) is caused by the large-scale expansion of a (CTG•CAG)n repeat in DMPK and DM1-AS. The production of toxic transcripts with long trinucleotide tracts from these genes results in impairment of the myogenic differentiation capacity as cDM's most prominent morpho-phenotypic hallmark. In the current in vitro study, we compared the early differentiation programs of isogenic cDM myoblasts with and without a (CTG)2600 repeat obtained by gene editing. We found that excision of the repeat restored the ability of cDM myoblasts to engage in myogenic fusion, preventing the ensuing myotubes from remaining immature. Although the cDM-typical epigenetic status of the DM1 locus and the expression of genes therein were not altered upon removal of the repeat, analyses at the transcriptome and proteome level revealed that early abnormalities in the temporal expression of differentiation regulators, myogenic progression markers, and alternative splicing patterns before and immediately after the onset of differentiation became normalized. Our observation that molecular and cellular features of cDM are reversible in vitro and can be corrected by repeat-directed genome editing in muscle progenitors, when already committed and poised for myogenic differentiation, is important information for the future development of gene therapy for different forms of myotonic dystrophy type 1 (DM1).


Assuntos
Mioblastos/patologia , Distrofia Miotônica/genética , Repetições de Trinucleotídeos , Linhagem Celular , Epigênese Genética , Edição de Genes , Terapia Genética , Humanos , Desenvolvimento Muscular , Mioblastos/citologia , Mioblastos/metabolismo , Distrofia Miotônica/patologia , Distrofia Miotônica/terapia , Miotonina Proteína Quinase/genética
6.
PLoS One ; 14(5): e0217317, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31116797

RESUMO

Myotonic dystrophy type 1 (DM1) is a severe neuromuscular disorder caused by the expression of trinucleotide repeat-containing DMPK transcripts. Abnormally expanded (CUG)n repeats in these transcripts form hairpin-like structures that cause the RNA to accumulate in the cell nucleus by sequestering isoforms of the Muscleblind (MBNL) family, tissue-specific regulators of developmentally programmed, post-transcriptional processes in RNA metabolism. Through this mechanism, the function of MBNL in RNA processing becomes dominantly perturbed, which eventually leads to aberrant alternative splicing and the expression of foetal splice variants of a wide variety of proteins, including the MBNL isoforms themselves. Here, we employ a patient-derived muscle cell model for DM1 to examine in detail the expression of MBNL RNA and protein variants during myogenic differentiation. This DM1 model consists of a panel of isogenic myoblast cell lines that either contain a pathogenic DMPK allele with a congenital mutation of 2600 triplets, or lack this expanded repeat through CRISPR/Cas9-mediated gene editing. We found that the temporal expression levels of MBNL1, MBNL2 and MBNL3 RNAs are not influenced by presence of the (CTG)2600 repeat during myogenesis in vitro. However, throughout myoblast proliferation and differentiation to myotubes a disproportionate inclusion of MBNL1 exon 5 and MBNL2 exons 5 and 8 occurs in cells with the (CTG)2600 repeat. As a consequence, a reduced quantity and imbalanced collection of splice variants of MBNL1 and MBNL2 accumulates in both the cytoplasm and the nucleus of DM1 myoblasts and myotubes. We thus propose that both the quantitative and qualitative changes in the intracellular partitioning of MBNL proteins are a pivotal cause of skeletal muscle problems in DM1, starting already in muscle progenitor cells.


Assuntos
Distrofia Miotônica/genética , Proteínas de Ligação a RNA/genética , Expansão das Repetições de Trinucleotídeos , Processamento Alternativo , Linhagem Celular , Éxons , Edição de Genes , Expressão Gênica , Humanos , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Mioblastos/metabolismo , Mioblastos/patologia , Distrofia Miotônica/metabolismo , Distrofia Miotônica/patologia , Miotonina Proteína Quinase/genética , Proteínas de Ligação a RNA/metabolismo
7.
RNA ; 25(4): 481-495, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30700578

RESUMO

Myotonic dystrophy type 1 (DM1) is a complex neuromuscular disorder caused by expansion of a CTG repeat in the 3'-untranslated region (UTR) of the DMPK gene. Mutant DMPK transcripts form aberrant structures and anomalously associate with RNA-binding proteins (RBPs). As a first step toward better understanding of the involvement of abnormal DMPK mRNA folding in DM1 manifestation, we used SHAPE, DMS, CMCT, and RNase T1 structure probing in vitro for modeling of the topology of the DMPK 3'-UTR with normal and pathogenic repeat lengths of up to 197 CUG triplets. The resulting structural information was validated by disruption of base-pairing with LNA antisense oligonucleotides (AONs) and used for prediction of therapeutic AON accessibility and verification of DMPK knockdown efficacy in cells. Our model for DMPK RNA structure demonstrates that the hairpin formed by the CUG repeat has length-dependent conformational plasticity, with a structure that is guided by and embedded in an otherwise rigid architecture of flanking regions in the DMPK 3'-UTR. Evidence is provided that long CUG repeats may form not only single asymmetrical hairpins but also exist as branched structures. These newly identified structures have implications for DM1 pathogenic mechanisms, like sequestration of RBPs and repeat-associated non-AUG (RAN) translation.


Assuntos
Regiões 3' não Traduzidas , Sequências Repetidas Invertidas , Miotonina Proteína Quinase/genética , Repetições de Trinucleotídeos , Pareamento de Bases , Expressão Gênica , Humanos , Modelos Genéticos , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , Distrofia Miotônica/patologia , Miotonina Proteína Quinase/metabolismo , Conformação de Ácido Nucleico , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Oligonucleotídeos Antissenso/síntese química , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
8.
Biochemistry ; 57(32): 4891-4902, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30024736

RESUMO

The human molecular chaperone DNAJB6, an oligomeric protein with a conserved S/T-rich region, is an efficient suppressor of amyloid fibril formation by highly aggregation-prone peptides such as the Aß and polyQ peptides associated with Alzheimer's and Huntington's disease, respectively. We previously showed that DNAJB6 can inhibit the processes through which amyloid fibrils are formed via strong interactions with aggregated forms of Aß42 that become sequestered. Here we report that the concentration-dependent capability of DNAJB6 to suppress fibril formation in thioflavin T fluorescence assays decreases progressively with an increasing number of S/T substitutions, with an almost complete loss of suppression when 18 S/T residues are substituted. The kinetics of primary nucleation in particular are affected. No detectable changes in the structure are caused by the substitutions. Also, the level of binding of DNAJB6 to Aß42 decreases with the S/T substitutions, as determined by surface plasmon resonance and microscale thermophoresis. The aggregation process monitored using nuclear magnetic resonance spectroscopy showed that DNAJB6, in contrast to a mutational variant with 18 S/T residues substituted, can keep monomeric Aß42 soluble for an extended time. The inhibition of the primary nucleation is likely to depend on hydroxyl groups in side chains of the S/T residues, and hydrogen bonding with Aß42 is one plausible molecular mechanism, although other possibilities cannot be excluded. The loss of the ability to suppress fibril formation upon S/T to A substitution was previously observed also for polyQ peptides, suggesting that the S/T residues in the DNAJB6-like chaperones have a general ability to inhibit amyloid fibril formation by different aggregation-prone peptides.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Amiloide/metabolismo , Proteínas de Choque Térmico HSP40/química , Proteínas de Choque Térmico HSP40/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Amiloide/química , Peptídeos beta-Amiloides/química , Humanos , Ligação de Hidrogênio , Modelos Biológicos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo
9.
Mol Cell ; 62(2): 272-283, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27151442

RESUMO

Expanded CAG repeats lead to debilitating neurodegenerative disorders characterized by aggregation of proteins with expanded polyglutamine (polyQ) tracts. The mechanism of aggregation involves primary and secondary nucleation steps. We show how a noncanonical member of the DNAJ-chaperone family, DNAJB6, inhibits the conversion of soluble polyQ peptides into amyloid fibrils, in particular by suppressing primary nucleation. This inhibition is mediated by a serine/threonine-rich region that provides an array of surface-exposed hydroxyl groups that bind to polyQ peptides and may disrupt the formation of the H bonds essential for the stability of amyloid fibrils. Early prevention of polyQ aggregation by DNAJB6 occurs also in cells and leads to delayed neurite retraction even before aggregates are visible. In a mouse model, brain-specific coexpression of DNAJB6 delays polyQ aggregation, relieves symptoms, and prolongs lifespan, pointing to DNAJB6 as a potential target for disease therapy and tool for unraveling early events in the onset of polyQ diseases.

10.
Molecules ; 20(4): 6592-600, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25875038

RESUMO

Citrullination is the conversion of peptidylarginine to peptidylcitrulline, which is catalyzed by peptidylarginine deiminases. This conversion is involved in different physiological processes and is associated with several diseases, including cancer and rheumatoid arthritis. A common method to detect citrullinated proteins relies on anti-modified citrulline antibodies directed to a specific chemical modification of the citrulline side chain. Here, we describe a versatile, antibody-independent method for the detection of citrullinated proteins on a membrane, based on the selective reaction of phenylglyoxal with the ureido group of citrulline under highly acidic conditions. The method makes use of 4-azidophenylglyoxal, which, after reaction with citrullinated proteins, can be visualized with alkyne-conjugated probes. The sensitivity of this procedure, using an alkyne-biotin probe, appeared to be comparable to the antibody-based detection method and independent of the sequence surrounding the citrulline.


Assuntos
Western Blotting , Citrulina/química , Fenilglioxal/química , Proteínas/química , Animais , Western Blotting/métodos , Catálise , Humanos , Hidrolases/metabolismo , Indicadores e Reagentes/química , Desiminases de Arginina em Proteínas , Proteínas/metabolismo , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...