Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 154(15): 154301, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33887921

RESUMO

New homogeneous nucleation experiments are presented at 240 K for water in carrier gas mixtures of nitrogen with carbon dioxide molar fractions of 5%, 15%, and 25%. The pulse expansion wave tube is used to test three different pressure conditions, namely, 0.1, 1, and 2 MPa. In addition, a restricted series of nucleation experiments is presented for 25% carbon dioxide mixtures at temperatures of 234 and 236 K at 0.1 MPa. As pressure and carbon dioxide content are increased, the nucleation rate increases accordingly. This behavior is attributed to the reduction in the water surface tension by the adsorption of carrier gas molecules. The new data are compared with theoretical predictions based on the classical nucleation theory and on extrapolations of empirical surface tension data to the supercooled conditions at 240 K. The extrapolation is carried out on the basis of a theoretical adsorption/surface tension model, extended to multi-component mixtures. The theoretical model appears to strongly overestimate the pressure and composition dependence. At relatively low pressures of 0.1 MPa, a reduction in the nucleation rates is found due to an incomplete thermalization of colliding clusters and carrier gas molecules. The observed decrease in the nucleation rate is supported by the theoretical model of Barrett, generalized here for water in multi-component carrier gas mixtures. The temperature dependence of the nucleation rate at 0.1 MPa follows the scaling model proposed by Hale [J. Chem. Phys. 122, 204509 (2005)].

2.
J Chem Phys ; 153(16): 164303, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33138427

RESUMO

Homogeneous nucleation of water is investigated in argon and in nitrogen at about 240 K and 0.1 MPa, 1 MPa, and 2 MPa by means of a pulse expansion wave tube. The surface tension reduction at high pressure qualitatively explains the observed enhancement of the nucleation rate of water in argon as well as in nitrogen. The differences in nucleation rates for the two mixtures at high pressure are consistent with the differences in adsorption behavior of the different carrier gas molecules. At low pressure, there is not enough carrier gas available to ensure the growing clusters are adequately thermalized by collisions with carrier gas molecules so that the nucleation rate is lower than under isothermal conditions. This reduction depends on the carrier gas, pressure, and temperature. A qualitative agreement between experiments and theory is found for argon and nitrogen as carrier gases. As expected, the reduction in the nucleation rates is more pronounced at higher temperatures. For helium as the carrier gas, non-isothermal effects appear to be substantially stronger than predicted by theory. The critical cluster sizes are determined experimentally and theoretically according to the Gibbs-Thomson equation, showing a reasonable agreement as documented in the literature. Finally, we propose an empirical correction of the classical nucleation theory for the nucleation rate calculation. The empirical expression is in agreement with the experimental data for the analyzed mixtures (water-helium, water-argon, and water-nitrogen) and thermodynamic conditions (0.06 MPa-2 MPa and 220 K-260 K).

3.
J Chem Phys ; 142(16): 164307, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25933764

RESUMO

Homogeneous nucleation rates of water droplets were measured at a nucleation temperature close to 240 K in a Pulse-Expansion Wave Tube (PEWT). Several measures were taken to improve the data obtained with the PEWT. For instance, the molar water vapor fraction was determined with three independent techniques. The resulting standard uncertainty of the supersaturation was within 1.8%. Results are given for water nucleation in helium at 100 kPa and at 1000 kPa and in nitrogen at 1000 kPa. Two trends were observed: (i) the values of the nucleation rate of water in helium at 1000 kPa are slightly but significantly higher (factor 3) than its values at 100 kPa and (ii) nucleation rates of water in nitrogen at 1000 kPa are clearly higher (factor 10) than in helium at the same pressure. It is argued that the explanation of the two observed trends is different. For case (i), it is the insufficient thermalization of the growing water clusters in helium at the lowest pressure that has a reducing effect on the nucleation rate, although a full quantitative agreement has not yet been reached. For case (ii), thermal effects being negligible, it is the pressure dependency of the surface tension, much stronger for nitrogen than for helium, that explains the trends observed, although also here a full quantitative agreement has not yet been achieved.

4.
J Chem Phys ; 132(20): 204504, 2010 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-20515097

RESUMO

Homogeneous nucleation rates and droplet growth rates of water in pure methane and mixtures of methane and carbon dioxide were measured in an expansion wave tube at 235 K and 10 bar. The nucleation rate in pure methane is three orders of magnitude higher than literature nucleation rates of water in low-pressure helium or argon. Addition of carbon dioxide to the carrier gas mixture increases the rates even more. Specifically, rates in a mixture of methane and 3% carbon dioxide are a factor of 10 higher than the rates in pure methane. With 25% carbon dioxide, the rates are four orders of magnitude higher than the rates in pure methane. An application of the nucleation theorem shows that the critical cluster consists of 22 water molecules and 5 methane molecules, for nucleation in pure methane. Growth rates of water droplets were measured in methane and in methane-carbon dioxide mixtures at 243 K and 11.5 bar. At equal temperature, pressure and water vapor fraction, the growth rate of the squared droplet radius is about 20% lower in the mixture with 25% carbon dioxide than in pure methane. The lower growth rate is caused by a smaller diffusion coefficient of water in the mixture with carbon dioxide; the difference of the diffusion coefficients is qualitatively reproduced by the empirical Fuller correlation combined with Blanc's law.

5.
J Chem Phys ; 130(1): 014102, 2009 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-19140607

RESUMO

A comparison is made between two models of homogeneous nucleation and droplet growth. The first is a kinetic model yielding the master equations for the concentrations of molecular clusters. Such a model does not make an explicit distinction between nucleation and droplet growth. The second model treats nucleation and growth separately, fully ignoring stochastic effects, and leads to the continuous general dynamic equation (GDE). Problems in applying the GDE model are discussed. A numerical solution of the kinetic equation is compared with an analytic solution of the GDE for two different cases: (1) the onset of nucleation and (2) the nucleation pulse. The kinetic model yields the thickness of the condensation front in size space as a function of supersaturation and dimensionless surface tension. If the GDE is applied properly, solutions of the GDE and the kinetic equation agree, with the exception of very small clusters, near-critical clusters, and the condensation front.

6.
J Chem Phys ; 127(16): 164720, 2007 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-17979384

RESUMO

The Van der Waals-Cahn-Hilliard gradient theory (GT) is applied to determine the structure and the work of formation of clusters in supersaturated n-nonane vapor. The results are analyzed as functions of the difference of pressures of the liquid phase and vapor phase in chemical equilibrium, which is a measure for the supersaturation. The surface tension as a function of pressure difference shows first a weak maximum and then decreases monotonically. The computed Tolman length is in agreement with earlier results [L. Granasy, J. Chem. Phys. 109, 9660 (1998)] obtained with a different equation of state. A method based on the Gibbs adsorption equation is developed to check the consistency of GT results (or other simulation techniques providing the work of formation and excess number of molecules), and to enable an efficient interpolation. A cluster model is devised based on the density profile of the planar phase interface. Using this model we analyze the dependency of the surface tension on the pressure difference. We find three major contributions: (i) the effect of asymmetry of the density profile resulting into a linear increase of the surface tension, (ii) the effect of finite thickness of the phase interface resulting into a negative quadratic term, and (iii) the effect of buildup of a low-density tail of the density profile, also contributing as a negative quadratic term. Contributions (i)-(iii) fully explain the dependency of the surface tension on the pressure difference, including the range relevant to nucleation experiments. Contributions (i) and (ii) can be predicted from the planar density profile. The work of formation of noncritical clusters is derived and the nucleation rate is computed. The computed nucleation rates are closer to the experimental nucleation rate results than the classical Becker-Döring theory, and also the dependence on supersaturation is better predicted.

7.
J Acoust Soc Am ; 122(4): 2049-56, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17902842

RESUMO

The classical theory of wave propagation in elastic cylinders is extended to poro-elastic mandrel modes. The classical theory predicts the existence of undamped L modes and damped C, I, and Z modes. These waves also appear in poro-elastic mandrels, but all of them become damped because of viscous effects. The presence of the Biot slow bulk wave in the poro-elastic material is responsible for the generation of additional mandrel modes. One of them was already discussed by Feng and Johnson, and the others can be grouped together as so-called D modes. The damping of these D modes is at least as high as the damping of the free-field slow wave.

8.
J Microbiol Methods ; 67(3): 463-72, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16820233

RESUMO

Knowledge of mechanical properties and failure mechanisms of biofilms is needed to determine how biofilms react on mechanical stress. Methods currently available cannot be used to determine mechanical properties of biofilms on a small scale with high accuracy. A novel microindentation apparatus in combination with a confocal microscope was used to determine the viscoelastic properties of Streptococcus mutans biofilms. The apparatus comprises a small glass indenter and a highly sensitive force transducer. It was shown that the present biofilm, grown under still conditions, behaves as a viscoelastic solid with a storage modulus of 1-8 kPa and a loss modulus of 5-10 kPa at a strain of 10%. Biofilm failure was investigated visually through a confocal microscope by dragging the indenter through the biofilm. It was shown that the tensile strength of the biofilm is predominantly determined by the tensile strength of the extracellular polysaccharide matrix. The combination of microindentation and confocal microscopy is a promising technique to determine and characterize the mechanical properties of soft materials in various fields of microbiology.


Assuntos
Técnicas Bacteriológicas , Biofilmes , Streptococcus mutans/fisiologia , Fenômenos Químicos , Físico-Química , Elasticidade , Microscopia Confocal , Estresse Mecânico , Resistência à Tração
9.
J Chem Phys ; 123(10): 104505, 2005 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-16178608

RESUMO

We have measured homogeneous nucleation rates of water at 200-240 K in the carrier gas helium, in the range of 10(13) - 10(17) m(-3) s(-1) using an expansion wave tube. The rates agree well with the results of Wolk and Strey [J. Phys. Chem. B 105, 11683 (2001)] in the range of overlap (220-240 K), and are summarized by the empirical fit J = S exp[4.6 + 0.244T-(906.8 - 2.914T)(ln S)(2)], with J the nucleation rate in m(-3) s(-1), S the supersaturation, and T the temperature in K. We find that the supersaturation dependence of both our rates and those of Wolk and Strey is lower than classical theory predicts, and that the critical cluster is smaller than the classical critical size. These deviations are explained in the framework of the Tolman theory for surface tension, and the "Tolman length" is estimated from our experimental results. We find a positive Tolman length that increases with decreasing temperature, from about 0.1 Angstrom at 260 K to (0.6 +/- 0.4) Angstroms at 200 K. We present a nucleation rate expression that takes the Tolman length into account and show that both the supersaturation and temperature dependence are improved, compared to the classical theory.

10.
J Chem Phys ; 120(13): 6314, 2004 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15267520

RESUMO

In a recent paper Peeters et al. published new experimental data on nucleation rates of water in the temperature range of 200-235 K. They reported about a drastic change in the nucleation rate at 207 K. An error in their experimental procedure has been found. The data of Peeters et al. have been reinterpreted. The jump in nucleation rate disappears and the corrected nucleation rate data are in good agreement with data found by Wolk and Strey with a different experimental facility.

11.
J Acoust Soc Am ; 112(3 Pt 1): 890-5, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12243176

RESUMO

In this paper guided wave modes in porous media are investigated. A water-saturated porous cylinder is mounted in the test section of a shock tube. Between the porous sample and the wall of the shock tube a water-filled annulus exists. For very small annulus width, bulk waves are generated and one-dimensional modeling is sufficient. Otherwise two-dimensional effects become important and multiple guided wave modes occur. Using a newly developed traversable positioning system in the shock tube, the frequency-dependent phase velocities and damping coefficients in the 1-120 kHz frequency range were measured. Prony's method was used for data processing. Agreement was found between the experimental data and the two-dimensional modeling of the shock tube which was based on Biot's theory.

12.
J Biomech ; 29(11): 1483-9, 1996 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-8894929

RESUMO

Laser Doppler anemometer (LDA) experiments were performed to gain quantitative information on the differences between the large-scale flow phenomena in a non-stenosed and a stenosed model of the carotid artery bifurcation. The influence of the presence of the stenosis was compared to the effect of flow pulse variation to evaluate the feasibility of early detection of stenosis in clinical practice. Three-dimensional Plexiglass models of a non-stenosed and a 25% stenosed carotid artery bifurcation were perfused with a Newtonian fluid. The flow conditions approximated physiological flow. The results of the velocity measurements in the non-stenosed model agreed with the results from previous hydrogen-bubble visualization. A shear layer separated the low-velocity area near the non-divider wall from the high-velocity area near the divider wall. In this shear layer, vortex formation occurred during the deceleration phase of the flow pulse. The instability of this shear layer dictated the flow disturbances. The influences of the mild stenosis, located at the non-divider wall, was mainly limited to the stability of the shear layer. No disturbances were found downstream of the stenosis near the non-divider wall. Using a pulse wave with an increased systolic deceleration time, the velocity distribution showed an extended region with reversed flow, a more pronounced shear layer and increased vortex strength. From these measurements it is obvious that the influence of the presence of a mild stenosis, mainly limited to the stability of the shear layer, can hardly be distinguished from the effects of a variation of the flow pulse. From this it can be concluded that methods for detection of mild stenosis, using solely the large-scale flow phenomena, as can be measured by ultrasound or MRI techniques, will hardly have any clinical relevance.


Assuntos
Estenose das Carótidas/fisiopatologia , Modelos Cardiovasculares , Velocidade do Fluxo Sanguíneo , Artéria Carótida Interna/fisiologia , Diástole/fisiologia , Humanos , Fluxometria por Laser-Doppler , Fluxo Pulsátil , Estresse Mecânico , Sístole/fisiologia
13.
J Biomech ; 27(5): 581-90, 1994 May.
Artigo em Inglês | MEDLINE | ID: mdl-8027092

RESUMO

This paper deals with the effect of geometric changes of mild stenoses on large-scale flow disturbances in the carotid artery bifurcation. Hydrogen-bubble visualisation experiments have been performed in Plexiglas models of a non-stenosed and a 25% stenosed carotid artery bifurcation. The flow conditions approximate physiological flow. The experiments show that shortly after the onset of the diastolic phase vortex formation occurs in the plane of symmetry. This vortex formation is found in a shear layer, which is formed in the carotid sinus. The shear layer is located between a region with low shear rates at the non-divider wall and a region with high shear rates at the divider wall. In order to gain insight into the parameters that are important with respect to the stability of the shear layer, experiments have been performed in which the influence of the shape of the flow pulse, the Reynolds number (Re), the Womersley parameter (alpha) and the flow division ratio (gamma) on the flow phenomena is studied. From these experiments it appears that the flow phenomena in the carotid artery bifurcation are significantly influenced by Re, alpha the systolic acceleration (sa) and deceleration (sd) and the duration of the peak-systolic flow (Tmax). With these results a simplified flow pulse is chosen, with which the experiments in the non-stenosed and the 25% stenosed bifurcation are performed. Comparison of the hydrogen-bubble profiles in the 0 and 25% stenosed models with similar flow conditions shows that the geometric change of the 25% stenosis only slightly influences the flow phenomena. The most striking influences are found in the stability of the shear layer. Quantitative experiments by means of laser Doppler anemometry measurements and numerical computations are needed to analyse the influence of the stenosis of the flow field more accurately.


Assuntos
Artérias Carótidas/fisiopatologia , Estenose das Carótidas/fisiopatologia , Hemorreologia , Hidrogênio , Modelos Cardiovasculares , Aceleração , Velocidade do Fluxo Sanguíneo/fisiologia , Artérias Carótidas/patologia , Artéria Carótida Primitiva/patologia , Artéria Carótida Primitiva/fisiopatologia , Artéria Carótida Externa/patologia , Artéria Carótida Externa/fisiopatologia , Artéria Carótida Interna/patologia , Artéria Carótida Interna/fisiopatologia , Estenose das Carótidas/patologia , Desenho Assistido por Computador , Desaceleração , Diástole/fisiologia , Humanos , Metilmetacrilato , Metilmetacrilatos , Fluxo Pulsátil/fisiologia , Fluxo Sanguíneo Regional/fisiologia , Processamento de Sinais Assistido por Computador , Estresse Mecânico , Sístole/fisiologia
14.
Appl Opt ; 33(10): 1980-8, 1994 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20885533

RESUMO

Two supplementary methods for time-dependent droplet sizing, both based on the spectral dependence of light extinction, are applied to an adiabatically expanding vapor in which droplets are formed as a result of heterogeneous condensation. First, by measuring the extinction coefficients at three different wavelengths, we obtain time-dependent values of the modal radius, the size variance, and the droplet number density, with a typical time resolution of 1 µs. The shape of the size-distribution function is investigated by a second method. Using a white-light source in combination with a spectrometer and a CCD array, we obtain the full visible light attenuation spectrum with a time resolution of 1.5 ms. By applying an inversion technique based on trial size distributions, we find that the zeroth-order log-normal distribution describes the fog adequately. Both methods yield the same droplet growth curves and droplet number densities.

15.
J Biomech ; 22(5): 477-84, 1989.
Artigo em Inglês | MEDLINE | ID: mdl-2777822

RESUMO

An experimental and theoretical analysis is made of pulsatile wave propagation in deformable latex tubes as a model of the propagation of pressure pulses in arteries. A quasi one-dimensional linear model is used in which, in particular, attention is paid to the viscous phenomena in fluid and tube wall. The agreement between experimental and theoretical results is satisfactory. It appeared that the viscoelastic behaviour of the tube wall dominates the damping of the pressure pulse. Several linear models are used to describe the wall behaviour. No significant differences between the results of these models were found.


Assuntos
Modelos Cardiovasculares , Fluxo Pulsátil , Reologia , Pressão Sanguínea , Elasticidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...