Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant J ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961707

RESUMO

Cassava is a crucial staple crop for smallholder farmers in tropical Asia and Sub-Saharan Africa. Although high yield remains the top priority for farmers, the significance of nutritional values has increased in cassava breeding programs. A notable negative correlation between provitamin A and starch accumulation poses a significant challenge for breeding efforts. The negative correlation between starch and carotenoid levels in conventional and genetically modified cassava plants implies the absence of a direct genomic connection between the two traits. The competition among various carbon pathways seems to account for this relationship. In this study, we conducted a thorough analysis of 49 African cassava genotypes with varying levels of starch and provitamin A. Our goal was to identify factors contributing to differential starch accumulation. Considering carotenoid levels as a confounding factor in starch production, we found that yellow- and white-fleshed storage roots did not differ significantly in most measured components of starch or de novo fatty acid biosynthesis. However, genes and metabolites associated with myo-inositol synthesis and cell wall polymer production were substantially enriched in high provitamin A genotypes. These results indicate that yellow-fleshed cultivars, in comparison to their white-fleshed counterparts, direct more carbon toward the synthesis of raffinose and cell wall components. This finding is underlined by a significant rise in cell wall components measured within the 20 most contrasting genotypes for carotenoid levels. Our findings enhance the comprehension of the biosynthesis of starch and carotenoids in the storage roots of cassava.

2.
Plant J ; 116(1): 38-57, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37329210

RESUMO

Cassava's storage roots represent one of the most important sources of nutritional carbohydrates worldwide. Particularly, smallholder farmers in sub-Saharan Africa depend on this crop plant, where resilient and yield-improved varieties are of vital importance to support steadily increasing populations. Aided by a growing understanding of the plant's metabolism and physiology, targeted improvement concepts already led to visible gains in recent years. To expand our knowledge and to contribute to these successes, we investigated storage roots of eight cassava genotypes with differential dry matter content from three successive field trials for their proteomic and metabolic profiles. At large, the metabolic focus in storage roots transitioned from cellular growth processes toward carbohydrate and nitrogen storage with increasing dry matter content. This is reflected in higher abundance of proteins related to nucleotide synthesis, protein turnover, and vacuolar energization in low starch genotypes, while proteins involved in sugar conversion and glycolysis were more prevalent in high dry matter genotypes. This shift in metabolic orientation was underlined by a clear transition from oxidative- to substrate-level phosphorylation in high dry matter genotypes. Our analyses highlight metabolic patterns that are consistently and quantitatively associated with high dry matter accumulation in cassava storage roots, providing fundamental understanding of cassava's metabolism as well as a data resource for targeted genetic improvement.


Assuntos
Manihot , Amido , Amido/metabolismo , Manihot/metabolismo , Proteômica , Fosforilação , Verduras/metabolismo , Genótipo , Estresse Oxidativo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
3.
Plant J ; 103(5): 1655-1665, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32502321

RESUMO

Cassava (Manihot esculenta Crantz) is one of the important staple foods in Sub-Saharan Africa. It produces starchy storage roots that provide food and income for several hundred million people, mainly in tropical agriculture zones. Increasing cassava storage root and starch yield is one of the major breeding targets with respect to securing the future food supply for the growing population of Sub-Saharan Africa. The Cassava Source-Sink (CASS) project aims to increase cassava storage root and starch yield by strategically integrating approaches from different disciplines. We present our perspective and progress on cassava as an applied research organism and provide insight into the CASS strategy, which can serve as a blueprint for the improvement of other root and tuber crops. Extensive profiling of different field-grown cassava genotypes generates information for leaf, phloem, and root metabolic and physiological processes that are relevant for biotechnological improvements. A multi-national pipeline for genetic engineering of cassava plants covers all steps from gene discovery, cloning, transformation, molecular and biochemical characterization, confined field trials, and phenotyping of the seasonal dynamics of shoot traits under field conditions. Together, the CASS project generates comprehensive data to facilitate conventional breeding strategies for high-yielding cassava genotypes. It also builds the foundation for genome-scale metabolic modelling aiming to predict targets and bottlenecks in metabolic pathways. This information is used to engineer cassava genotypes with improved source-sink relations and increased yield potential.


Assuntos
Produção Agrícola/métodos , Manihot/crescimento & desenvolvimento , Engenharia Metabólica/métodos , Abastecimento de Alimentos , Variação Genética , Genoma de Planta/genética , Manihot/genética , Manihot/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...