Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Theor Biol ; 454: 182-189, 2018 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-29883740

RESUMO

A key process in the life of any multicellular organism is its development from a single egg into a full grown adult. The first step in this process often consists of forming a tissue layer out of randomly placed cells on the surface of the egg. We present a model for generating such a tissue, based on mechanical interactions between the cells, and find that the resulting cellular pattern corresponds to the Voronoi tessellation of the nuclei of the cells. Experimentally, we obtain the same result in both fruit flies and flour beetles, with a distribution of cell shapes that matches that of the model, without any adjustable parameters. Finally, we show that this pattern is broken when the cells grow at different rates.


Assuntos
Proliferação de Células , Células Epiteliais/fisiologia , Epitélio/crescimento & desenvolvimento , Animais , Animais Geneticamente Modificados , Padronização Corporal/fisiologia , Divisão Celular/genética , Proliferação de Células/genética , Forma Celular/fisiologia , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Células Epiteliais/citologia , Epitélio/embriologia , Epitélio/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas Luminescentes/genética , Modelos Biológicos , Organogênese/fisiologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tribolium/embriologia , Tribolium/genética , Tribolium/crescimento & desenvolvimento , Proteína Vermelha Fluorescente
2.
Phys Rev E ; 94(6-2): 069904, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28085392

RESUMO

This corrects the article DOI: 10.1103/PhysRevE.91.032706.

3.
Artigo em Inglês | MEDLINE | ID: mdl-25871143

RESUMO

We present a model of soft active particles that leads to a rich array of collective behavior found also in dense biological swarms of bacteria and other unicellular organisms. Our model uses only local interactions, such as Vicsek-type nearest-neighbor alignment, short-range repulsion, and a local boundary term. Changing the relative strength of these interactions leads to migrating swarms, rotating swarms, and jammed swarms, as well as swarms that exhibit run-and-tumble motion, alternating between migration and either rotating or jammed states. Interestingly, although a migrating swarm moves slower than an individual particle, the diffusion constant can be up to three orders of magnitude larger, suggesting that collective motion can be highly advantageous, for example, when searching for food.


Assuntos
Fenômenos Mecânicos , Modelos Teóricos , Movimento (Física) , Dictyostelium/fisiologia , Difusão , Movimento , Myxococcales/fisiologia , Rotação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...