Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(4): 6239-6250, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35049265

RESUMO

The tribochemistry and transfer film formation at the metal/polymer interface plays an essential role in surface protection, wear reduction, and lubrication. Although the topic has been studied for decades, challenges persist in clarifying the nanoscale mechanism and dynamic evolution of tribochemical reactions. To investigate the tribochemistry between iron and polytetrafluoroethylene (PTFE) in ambient and cryogenic environments, we have trained and expanded a ReaxFF reactive force field to describe iron-oxygen-water-PTFE systems (C/H/O/F/Fe). Using ReaxFF molecular dynamics simulations, we find that mechanical shearing of single asperity induced the degradation of PTFE molecules and radicals, showing subsequent oxidation and hydroxylation reactions of the radicals initiated by C-C bond cleavage, in agreement with previous experimental observations. Furthermore, we studied mechanisms of interfacial tribochemical reactions and formation of transfer films. We found that tribochemical wear and Fe-C and Fe-F bonding networks are important mechanisms for anchoring molecular chains to form a transfer film on the iron countersurface. Hydroxyl groups can dehydrogenate to form short and strong chelation bonds with the Fe2O3 countersurface. A friction-induced oriented molecular layer plays a key role in reducing friction, which is responsible for the excellent lubrication property. By varying temperatures in the range of 10-300 K, we found a nonmonotonic change in friction with a maxima at 100 K. At cryogenic temperatures, the molecular mobility was obviously suppressed, while the chain rigidity was enhanced, resulting in the less oriented interface and brittle-like shear interface, which is responsible for nonmonotonic friction. This work elucidates mechanisms of tribochemical reactions and transfer film formation between iron and PTFE at the atomistic level, facilitating design and development of self-lubricating materials, especially under harsh conditions.

2.
Nanoscale ; 11(12): 5607-5616, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30860524

RESUMO

An understanding of the nucleation and growth of hexagonal boron nitride (hBN) on nickel substrates is essential to its development as a functional material. In particular, fundamental insights into the formation of the hexagonal lattices with alternating boron (B) and nitrogen (N) atoms could be exploited to control hBN lattice morphologies for targeted applications. In this study, the preferred shapes and edge configurations of atomically smooth hBN on Ni(111) were investigated using molecular dynamics (MD) simulations, along with reactive force field (ReaxFF) developed to represent the Ni/B/N system and the lattice-building B-N bond formation. The obtained hBN lattices, from different B : N feed ratios, are able to confirm that hBN domain geometries can indeed be tuned by varying thermodynamic parameters (i.e., chemical potentials of N and B) - a finding that has only been predicted using quantum mechanical theories. Here, we also showed that the nitrogen fed to the system plays a more crucial role in dictating the size of hBN lattices. With an increase of the relative N content, the simulated hBN domain shapes also transition from equilateral triangles to hexagons, again, consistent with the anticipation based on Density Functional Theory (DFT) calculations. Hence, a plausible approach to acquire a desired hBN nanostructure depends on careful control over the synthesis conditions, which now can benefit from reliable molecular simulations.

3.
J Phys Chem A ; 123(10): 2125-2141, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30775922

RESUMO

A new ReaxFF reactive force field has been developed for water-electrolyte systems including cations Li+, Na+, K+, and Cs+ and anions F-, Cl-, and I-. The reactive force field parameters have been trained against quantum mechanical (QM) calculations related to water binding energies, hydration energies and energies of proton transfer. The new force field has been validated by applying it to molecular dynamics (MD) simulations of the ionization of different electrolytes in water and comparison of the results with experimental observations and thermodynamics. Radial distribution functions (RDF) determined for most of the atom pairs (cation or anion with oxygen and hydrogen of water) show a good agreement with the RDF values obtained from DFT calculations. On the basis of the applied force field, the ReaxFF simulations have described the diffusion constants for water and electrolyte ions in alkali metal hydroxide and chloride salt solutions as a function of composition and electrolyte concentration. The obtained results open opportunities to advance ReaxFF methodology to a wide range of applications involving electrolyte ions and solutions.

4.
ACS Nano ; 11(4): 3585-3596, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28319661

RESUMO

Atomistic-scale insights into the growth of a continuous, atomically thin hexagonal boron nitride (hBN) lattice from elemental boron and nitrogen on Ni substrates were obtained from multiscale modeling combining density functional theory (DFT) and reactive molecular dynamics. The quantum mechanical calculations focused on the adsorption and reaction energetics for the hBN building-block species, i.e., atomic B, N, BxNy (x, y = 1, 2), on Ni(111) and Ni(211), and the diffusion pathways of elemental B and N on these slab model surfaces and in the sublayer. B can diffuse competitively on both the surface and in the sublayer, while N diffuses strictly on the substrate surface. The DFT data were then used to generate a classical description of the Ni-B and Ni-N pair interactions within the formulation of the reactive force field, ReaxFF. Using the potential developed from this work, the elementary nucleation and growth process of an hBN monolayer structure from elemental B and N is shown at the atomistic scale. The nucleation initiates from the growth of linear BN chains, which evolve into branched and then hexagonal lattices. Subsequent DFT calculations confirmed the structure evolution energetically and validate the self-consistency of this multiscale modeling framework. On the basis of this framework, the fundamental aspects regarding crystal quality and the role of temperature and substrates used during hBN growth can also be understood.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...