Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(13): 7559-7568, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36961990

RESUMO

Prebiotic environments are dynamic, containing a range of periodic and aperiodic variations in reaction conditions. However, the impact of the temporal dynamics of environmental conditions upon prebiotic chemical reaction networks has not been investigated. Here, we demonstrate how the magnitude and rate of temporal fluctuations of the catalysts Ca2+ and hydroxide control the product distributions of the formose reaction. Surprisingly, the product compositions of the formose reaction under dynamic conditions deviate significantly from those under steady state conditions. We attribute these compositional changes to the non-uniform propagation of fluctuations through the network, thereby shaping reaction outcomes. An examination of temporal concentration patterns showed that collections of compounds responded collectively to perturbations, indicating that key gating reactions branching from the Breslow cycle may be important responsive features of the formose reaction. Our findings show how the compositions of prebiotic reaction networks were shaped by sequential environmental events, illustrating the necessity for considering the temporal traits of prebiotic environments that supported the origin of life.

2.
Nat Chem ; 14(6): 623-631, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35668214

RESUMO

The evolution of life from the prebiotic environment required a gradual process of chemical evolution towards greater molecular complexity. Elaborate prebiotically relevant synthetic routes to the building blocks of life have been established. However, it is still unclear how functional chemical systems evolved with direction using only the interaction between inherent molecular chemical reactivity and the abiotic environment. Here we demonstrate how complex systems of chemical reactions exhibit well-defined self-organization in response to varying environmental conditions. This self-organization allows the compositional complexity of the reaction products to be controlled as a function of factors such as feedstock and catalyst availability. We observe how Breslow's cycle contributes to the reaction composition by feeding C2 building blocks into the network, alongside reaction pathways dominated by formaldehyde-driven chain growth. The emergence of organized systems of chemical reactions in response to changes in the environment offers a potential mechanism for a chemical evolution process that bridges the gap between prebiotic chemical building blocks and the origin of life.


Assuntos
Origem da Vida , Prebióticos , Catálise , Fenômenos Químicos , Evolução Química
3.
Chemistry ; 26(7): 1676-1682, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-31808965

RESUMO

Current efforts to design functional molecular systems have overlooked the importance of coupling out-of-equilibrium behaviour with changes in the environment. Here, the authors use an oscillating reaction network and demonstrate that the application of environmental forcing, in the form of periodic changes in temperature and in the inflow of the concentration of one of the network components, removes the dependency of the periodicity of this network on temperature or flow rates and enforces a stable periodicity across a wide range of conditions. Coupling a system to a dynamic environment can thus be used as a simple tool to regulate the output of a network. In addition, the authors show that coupling can also induce an increase in behavioural complexity to include quasi-periodic oscillations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA