Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chronobiol Int ; 15(5): 551-66, 1998 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-9787941

RESUMO

Fetal neurografts containing the suprachiasmatic nucleus (SCN) can restore the circadian locomotor and drinking rhythm of SCN-lesioned (SCNX) rat and hamster. This functional outcome finally proves that the endogenous biological clock autonomously resides in the SCN. Observations on the cellular requirements of the "new" SCN for restoration of the arrhythmic SCNX animals have led to some new insights and confirmed findings from other studies. A critical mass of SCN neurons appeared necessary for functional effects, whereas the temporal profile of reinstatement of rhythm correlated with the delayed maturation of the grafted SCN. Cytoarchitectonically, the grafted SCN does not seem to develop normally for all anatomical aspects. Complementary clusters of vasoactive intestinal polypeptide(VIP)- and vasopressin(VP)ergic neurons are formed, but somatostatin(SOM)ergic neurons do not always "join" this group, as is normally seen in situ. Nevertheless, these new SCNs can restore the ablated functions. As the period length of restored rhythms tends to vary, it might be that the grafted SCN underwent an altered or impaired maturation that resulted in a different setting of its clock mechanism. A prominent role of VIPergic neurons seems indicated by their presence in all functional grafts, but, although they may be required, these cells do not appear to be a sufficient condition for restoration of rhythm. Many grafts exhibit the presence of VIPergic cells without counteracting the arrhythmia, whereas VP- and SOMergic SCN neurons are usually present as well. Findings with VP-deficient Brattleboro rat grafts indicated that VP is not the primary obligatory signal of circadian activity. It is argued that perhaps the role of SOMergic neurons in the clock function of the (grafted) SCN has been insufficiently considered. However, one should keep in mind that the peptides of the various types of SCN neurons may function only as cofactors, mutually modulating molecular or bioelectrical cellular activities within the nucleus or the message of the main transmitter gamma-aminobutyric acid.


Assuntos
Transplante de Tecido Encefálico/fisiologia , Ritmo Circadiano/fisiologia , Atividade Motora/fisiologia , Neurônios/fisiologia , Núcleo Supraquiasmático/fisiologia , Núcleo Supraquiasmático/transplante , Animais , Cricetinae , Comportamento de Ingestão de Líquido/fisiologia , Transplante de Tecido Fetal/fisiologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...