Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 896: 164987, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37394078

RESUMO

Wildland fire extent varies seasonally and interannually in response to climatic and landscape-level drivers, yet predicting wildfires remains a challenge. Existing linear models that characterize climate and wildland fire relationships fail to account for non-stationary and non-linear associations, thus limiting prediction accuracy. To account for non-stationary and non-linear effects, we use time-series climate and wildfire extent data from across China with unit root methods, thus providing an approach for improved wildfire prediction. Results from this approach suggest that wildland area burned is sensitive to vapor pressure deficit (VPD) and maximum temperature changes over short and long-term scenarios. Moreover, repeated fires constrain system variability resulting in non-stationarity responses. We conclude that an autoregressive distributed lag (ARDL) approach to dynamic simulation models better elucidates interactions between climate and wildfire compared to more commonly used linear models. We suggest that this approach will provide insights into a better understanding of complex ecological relationships and represents a significant step toward the development of guidance for regional planners hoping to address climate-driven increases in wildfire incidence and impacts.

2.
Sci Rep ; 10(1): 19961, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203941

RESUMO

Grassland fire dynamics are subject to myriad climatic, biological, and anthropogenic drivers, thresholds, and feedbacks and therefore do not conform to assumptions of statistical stationarity. The presence of non-stationarity in time series data leads to ambiguous results that can misinform regional-level fire management strategies. This study employs non-stationarity in time series data among multiple variables and multiple intensities using dynamic simulations of autoregressive distributed lag models to elucidate key drivers of climate and ecological change on burned grasslands in Xilingol, China. We used unit root methods to select appropriate estimation methods for further analysis. Using the model estimations, we developed scenarios emulating the effects of instantaneous changes (i.e., shocks) of some significant variables on climate and ecological change. Changes in mean monthly wind speed and maximum temperature produce complex responses on area burned, directly, and through feedback relationships. Our framework addresses interactions among multiple drivers to explain fire and ecosystem responses in grasslands, and how these may be understood and prioritized in different empirical contexts needed to formulate effective fire management policies.

3.
PLoS One ; 11(4): e0154161, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27104611

RESUMO

Species distribution models (SDMs) are an effective way of predicting the potential distribution of species and their response to environmental change. Most SDMs apply presence data to a relatively generic set of predictive variables such as climate. However, this weakens the modelling process by overlooking the responses to more cryptic predictive variables. In this paper we demonstrate a means by which data gathered from an intensive animal trapping study can be used to enhance SDMs by combining field data with bioclimatic modelling techniques to determine the future potential distribution for the koomal (Trichosurus vulpecula hypoleucus). The koomal is a geographically isolated subspecies of the common brushtail possum, endemic to south-western Australia. Since European settlement this taxon has undergone a significant reduction in distribution due to its vulnerability to habitat fragmentation, introduced predators and tree/shrub dieback caused by a virulent group of plant pathogens of the genus Phytophthora. An intensive field study found: 1) the home range for the koomal rarely exceeded 1 km in in length at its widest point; 2) areas heavily infested with dieback were not occupied; 3) gap crossing between patches (>400 m) was common behaviour; 4) koomal presence was linked to the extent of suitable vegetation; and 5) where the needs of koomal were met, populations in fragments were demographically similar to those found in contiguous landscapes. We used this information to resolve a more accurate SDM for the koomal than that created from bioclimatic data alone. Specifically, we refined spatial coverages of remnant vegetation and dieback, to develop a set of variables that we combined with selected bioclimatic variables to construct models. We conclude that the utility value of an SDM can be enhanced and given greater resolution by identifying variables that reflect observed, species-specific responses to landscape parameters and incorporating these responses into the model.


Assuntos
Mudança Climática , Ecossistema , Modelos Teóricos , Trichosurus/fisiologia , Distribuição Animal , Animais , Clima , Conservação dos Recursos Naturais/métodos , Geografia , Dinâmica Populacional , Comportamento Predatório/fisiologia , Austrália do Sul , Árvores/fisiologia , Austrália Ocidental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...