Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 630(8015): 198-205, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38720074

RESUMO

Phosphoinositide-3-kinase-γ (PI3Kγ) is implicated as a target to repolarize tumour-associated macrophages and promote antitumour immune responses in solid cancers1-4. However, cancer cell-intrinsic roles of PI3Kγ are unclear. Here, by integrating unbiased genome-wide CRISPR interference screening with functional analyses across acute leukaemias, we define a selective dependency on the PI3Kγ complex in a high-risk subset that includes myeloid, lymphoid and dendritic lineages. This dependency is characterized by innate inflammatory signalling and activation of phosphoinositide 3-kinase regulatory subunit 5 (PIK3R5), which encodes a regulatory subunit of PI3Kγ5 and stabilizes the active enzymatic complex. We identify p21 (RAC1)-activated kinase 1 (PAK1) as a noncanonical substrate of PI3Kγ that mediates this cell-intrinsic dependency and find that dephosphorylation of PAK1 by PI3Kγ inhibition impairs mitochondrial oxidative phosphorylation. Treatment with the selective PI3Kγ inhibitor eganelisib is effective in leukaemias with activated PIK3R5. In addition, the combination of eganelisib and cytarabine prolongs survival over either agent alone, even in patient-derived leukaemia xenografts with low baseline PIK3R5 expression, as residual leukaemia cells after cytarabine treatment have elevated G protein-coupled purinergic receptor activity and PAK1 phosphorylation. Together, our study reveals a targetable dependency on PI3Kγ-PAK1 signalling that is amenable to near-term evaluation in patients with acute leukaemia.


Assuntos
Classe Ib de Fosfatidilinositol 3-Quinase , Transdução de Sinais , Quinases Ativadas por p21 , Humanos , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Classe Ib de Fosfatidilinositol 3-Quinase/genética , Quinases Ativadas por p21/metabolismo , Quinases Ativadas por p21/antagonistas & inibidores , Quinases Ativadas por p21/genética , Camundongos , Animais , Feminino , Leucemia/genética , Leucemia/enzimologia , Leucemia/patologia , Leucemia/metabolismo , Fosforilação , Linhagem Celular Tumoral , Mitocôndrias/metabolismo , Masculino
2.
Cancer Res Commun ; 4(3): 895-910, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38466569

RESUMO

Profiling hematopoietic and immune cells provides important information about disease risk, disease status, and therapeutic responses. Spectral flow cytometry enables high-dimensional single-cell evaluation of large cohorts in a high-throughput manner. Here, we designed, optimized, and implemented new methods for deep immunophenotyping of human peripheral blood and bone marrow by spectral flow cytometry. Two blood antibody panels capture 48 cell-surface markers to assess more than 58 cell phenotypes, including subsets of T cells, B cells, monocytes, natural killer (NK) cells, and dendritic cells, and their respective markers of exhaustion, activation, and differentiation in less than 2 mL of blood. A bone marrow antibody panel captures 32 markers for 35 cell phenotypes, including stem/progenitor populations, T-cell subsets, dendritic cells, NK cells, and myeloid cells in a single tube. We adapted and developed innovative flow cytometric analysis algorithms, originally developed for single-cell genomics, to improve data integration and visualization. We also highlight technical considerations for users to ensure data fidelity. Our protocol and analysis pipeline accurately identifies rare cell types, discerns differences in cell abundance and phenotype across donors, and shows concordant immune landscape trends in patients with known hematologic malignancy. SIGNIFICANCE: This study introduces optimized methods and analysis algorithms that enhance capabilities in comprehensive immunophenotyping of human blood and bone marrow using spectral flow cytometry. This approach facilitates detection of rare cell types, enables measurement of cell variations across donors, and provides proof-of-concept in identifying known hematologic malignancies. By unlocking complexities of hematopoietic and immune landscapes at the single-cell level, this advancement holds potential for understanding disease states and therapeutic responses.


Assuntos
Medula Óssea , Monócitos , Humanos , Citometria de Fluxo/métodos , Células Mieloides , Imunofenotipagem
3.
Blood Adv ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507736

RESUMO

Clonal hematopoiesis (CH) is an age-associated phenomenon that increases risk for hematologic malignancy and cardiovascular disease. CH is thought to enhance disease risk through inflammation in the peripheral blood1. Here, we profile peripheral blood gene expression in 66,968 single cells from a cohort of 17 CH patients and 7 controls. Using a novel mitochondrial DNA barcoding approach, we were able to identify and separately compare mutant TET2 and DNMT3A cells to non-mutant counterparts. We discovered the vast majority of mutated cells were in the myeloid compartment. Additionally, patients harboring DNMT3A and TET2 CH mutations possessed a pro-inflammatory profile in CD14+ monocytes through previously unrecognized pathways such as galectin and macrophage Inhibitory Factor (MIF). We also found that T cells from CH patients, though mostly un-mutated, had decreased expression of GTPase of the immunity associated protein (GIMAP) genes, which are critical to T cell development, suggesting that CH impairs T cell function.

4.
Nature ; 627(8003): 389-398, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253266

RESUMO

The human blood system is maintained through the differentiation and massive amplification of a limited number of long-lived haematopoietic stem cells (HSCs)1. Perturbations to this process underlie diverse diseases, but the clonal contributions to human haematopoiesis and how this changes with age remain incompletely understood. Although recent insights have emerged from barcoding studies in model systems2-5, simultaneous detection of cell states and phylogenies from natural barcodes in humans remains challenging. Here we introduce an improved, single-cell lineage-tracing system based on deep detection of naturally occurring mitochondrial DNA mutations with simultaneous readout of transcriptional states and chromatin accessibility. We use this system to define the clonal architecture of HSCs and map the physiological state and output of clones. We uncover functional heterogeneity in HSC clones, which is stable over months and manifests as both differences in total HSC output and biases towards the production of different mature cell types. We also find that the diversity of HSC clones decreases markedly with age, leading to an oligoclonal structure with multiple distinct clonal expansions. Our study thus provides a clonally resolved and cell-state-aware atlas of human haematopoiesis at single-cell resolution, showing an unappreciated functional diversity of human HSC clones and, more broadly, paving the way for refined studies of clonal dynamics across a range of tissues in human health and disease.


Assuntos
Linhagem da Célula , Hematopoese , Células-Tronco Hematopoéticas , Humanos , Cromatina/genética , Cromatina/metabolismo , Células Clonais/classificação , Células Clonais/citologia , Células Clonais/metabolismo , DNA Mitocondrial/genética , Células-Tronco Hematopoéticas/classificação , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Mutação , Análise de Célula Única , Transcrição Gênica , Envelhecimento
5.
Nature ; 618(7966): 834-841, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37286599

RESUMO

Tumours most often arise from progression of precursor clones within a single anatomical niche. In the bone marrow, clonal progenitors can undergo malignant transformation to acute leukaemia, or differentiate into immune cells that contribute to disease pathology in peripheral tissues1-4. Outside the marrow, these clones are potentially exposed to a variety of tissue-specific mutational processes, although the consequences of this are unclear. Here we investigate the development of blastic plasmacytoid dendritic cell neoplasm (BPDCN)-an unusual form of acute leukaemia that often presents with malignant cells isolated to the skin5. Using tumour phylogenomics and single-cell transcriptomics with genotyping, we find that BPDCN arises from clonal (premalignant) haematopoietic precursors in the bone marrow. We observe that BPDCN skin tumours first develop at sun-exposed anatomical sites and are distinguished by clonally expanded mutations induced by ultraviolet (UV) radiation. A reconstruction of tumour phylogenies reveals that UV damage can precede the acquisition of alterations associated with malignant transformation, implicating sun exposure of plasmacytoid dendritic cells or committed precursors during BPDCN pathogenesis. Functionally, we find that loss-of-function mutations in Tet2, the most common premalignant alteration in BPDCN, confer resistance to UV-induced cell death in plasmacytoid, but not conventional, dendritic cells, suggesting a context-dependent tumour-suppressive role for TET2. These findings demonstrate how tissue-specific environmental exposures at distant anatomical sites can shape the evolution of premalignant clones to disseminated cancer.


Assuntos
Transformação Celular Neoplásica , Células Dendríticas , Leucemia Mieloide Aguda , Neoplasias Cutâneas , Pele , Raios Ultravioleta , Humanos , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Células da Medula Óssea/efeitos da radiação , Morte Celular/efeitos da radiação , Linhagem da Célula/genética , Linhagem da Célula/efeitos da radiação , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Transformação Celular Neoplásica/efeitos da radiação , Células Clonais/metabolismo , Células Clonais/patologia , Células Clonais/efeitos da radiação , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Células Dendríticas/efeitos da radiação , Leucemia Mieloide Aguda/etiologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Mutação/efeitos da radiação , Especificidade de Órgãos , Análise da Expressão Gênica de Célula Única , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Raios Ultravioleta/efeitos adversos , Pele/patologia , Pele/efeitos da radiação
7.
Front Microbiol ; 14: 1151097, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37032882

RESUMO

Production of organic molecules is largely depending on fossil fuels. A sustainable alternative would be the synthesis of these compounds from CO2 and a cheap energy source, such as H2, CH4, NH3, CO, sulfur compounds or iron(II). Volcanic and geothermal areas are rich in CO2 and reduced inorganic gasses and therefore habitats where novel chemolithoautotrophic microorganisms for the synthesis of organic compounds could be discovered. Here we describe "Candidatus Hydrogenisulfobacillus filiaventi" R50 gen. nov., sp. nov., a thermoacidophilic, autotrophic H2-oxidizing microorganism, that fixed CO2 and excreted no less than 0.54 mol organic carbon per mole fixed CO2. Extensive metabolomics and NMR analyses revealed that Val, Ala and Ile are the most dominant form of excreted organic carbon while the aromatic amino acids Tyr and Phe, and Glu and Lys were present at much lower concentrations. In addition to these proteinogenic amino acids, the excreted carbon consisted of homoserine lactone, homoserine and an unidentified amino acid. The biological role of the excretion remains uncertain. In the laboratory, we noticed the production under high growth rates (0.034 h-1, doubling time of 20 h) in combination with O2-limitation, which will most likely not occur in the natural habitat of this strain. Nevertheless, this large production of extracellular organic molecules from CO2 may open possibilities to use chemolithoautotrophic microorganisms for the sustainable production of important biomolecules.

8.
Nat Commun ; 14(1): 448, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707513

RESUMO

Chromatin regulators are frequently mutated in human cancer and are attractive drug targets. They include diverse proteins that share functional domains and assemble into related multi-subunit complexes. To investigate functional relationships among these regulators, here we apply combinatorial CRISPR knockouts (KOs) to test over 35,000 gene-gene pairings in leukemia cells, using a library of over 300,000 constructs. Top pairs that demonstrate either compensatory non-lethal interactions or synergistic lethality enrich for paralogs and targets that occupy the same protein complex. The screen highlights protein complex dependencies not apparent in single KO screens, for example MCM histone exchange, the nucleosome remodeling and deacetylase (NuRD) complex, and HBO1 (KAT7) complex. We explore two approaches to NuRD complex inactivation. Paralog and non-paralog combinations of the KAT7 complex emerge as synergistic lethal and specifically nominate the ING5 PHD domain as a potential therapeutic target when paired with other KAT7 complex member losses. These findings highlight the power of combinatorial screening to provide mechanistic insight and identify therapeutic targets within redundant networks.


Assuntos
Cromatina , Leucemia , Humanos , Cromatina/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Montagem e Desmontagem da Cromatina , Leucemia/tratamento farmacológico , Leucemia/genética , Histona Acetiltransferases/metabolismo
9.
Leukemia ; 37(2): 359-369, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36473980

RESUMO

Cancer is driven by somatic mutations that provide a fitness advantage. While targeted therapies often focus on the mutated gene or its direct downstream effectors, imbalances brought on by cell-state alterations may also confer unique vulnerabilities. In myeloproliferative neoplasms (MPN), somatic mutations in the calreticulin (CALR) gene are disease-initiating through aberrant binding of mutant CALR to the thrombopoietin receptor MPL and ligand-independent activation of JAK-STAT signaling. Despite these mechanistic insights into the pathogenesis of CALR-mutant MPN, there are currently no mutant CALR-selective therapies available. Here, we identified differential upregulation of unfolded proteins, the proteasome and the ER stress response in CALR-mutant hematopoietic stem cells (HSCs) and megakaryocyte progenitors. We further found that combined pharmacological inhibition of the proteasome and IRE1-XBP1 axis of the ER stress response preferentially targets Calr-mutated HSCs and megakaryocytic-lineage cells over wild-type cells in vivo, resulting in an amelioration of the MPN phenotype. In serial transplantation assays following combined proteasome/IRE1 inhibition for six weeks, we did not find preferential depletion of Calr-mutant long-term HSCs. Together, these findings leverage altered proteostasis in Calr-mutant MPN to identify combinatorial dependencies that may be targeted for therapeutic benefit and suggest that eradicating disease-propagating Calr-mutant LT-HSCs may require more sustained treatment.


Assuntos
Calreticulina , Estresse do Retículo Endoplasmático , Complexo de Endopeptidases do Proteassoma , Humanos , Calreticulina/genética , Calreticulina/metabolismo , Citoplasma/metabolismo , Janus Quinase 2/genética , Mutação , Transtornos Mieloproliferativos/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Serina-Treonina Quinases/genética
10.
bioRxiv ; 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38328043

RESUMO

Phosphoinositide 3-kinase gamma (PI3Kγ) is implicated as a target to repolarize tumor-associated macrophages and promote anti-tumor immune responses in solid cancers. However, cancer cell-intrinsic roles of PI3Kγ are unclear. Here, by integrating unbiased genome-wide CRISPR interference screening with functional analyses across acute leukemias, we define a selective dependency on the PI3Kγ complex in a high-risk subset that includes myeloid, lymphoid, and dendritic lineages. This dependency is characterized by innate inflammatory signaling and activation of phosphoinositide 3-kinase regulatory subunit 5 ( PIK3R5 ), which encodes a regulatory subunit of PI3Kγ and stabilizes the active enzymatic complex. Mechanistically, we identify p21 (RAC1) activated kinase 1 (PAK1) as a noncanonical substrate of PI3Kγ that mediates this cell-intrinsic dependency independently of Akt kinase. PI3Kγ inhibition dephosphorylates PAK1, activates a transcriptional network of NFκB-related tumor suppressor genes, and impairs mitochondrial oxidative phosphorylation. We find that treatment with the selective PI3Kγ inhibitor eganelisib is effective in leukemias with activated PIK3R5 , either at baseline or by exogenous inflammatory stimulation. Notably, the combination of eganelisib and cytarabine prolongs survival over either agent alone, even in patient-derived leukemia xenografts with low baseline PIK3R5 expression, as residual leukemia cells after cytarabine treatment have elevated G protein-coupled purinergic receptor activity and PAK1 phosphorylation. Taken together, our study reveals a targetable dependency on PI3Kγ/PAK1 signaling that is amenable to near-term evaluation in patients with acute leukemia.

11.
JCI Insight ; 7(17)2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35943811

RESUMO

B lymphocytes have long been recognized for their critical contributions to adaptive immunity, providing defense against pathogens through cognate antigen presentation to T cells and Ab production. More recently appreciated is that B cells are also integral in securing self-tolerance; this has led to interest in their therapeutic application to downregulate unwanted immune responses, such as transplant rejection. In this study, we found that PMA- and ionomycin-activated mouse B cells acquire regulatory properties following stimulation through TLR4/TLR9 receptors (Bregs-TLR). Bregs-TLR efficiently inhibited T cell proliferation in vitro and prevented allograft rejection. Unlike most reported Breg activities, the inhibition of alloimmune responses by Bregs-TLR relied on the expression of TGF-ß and not IL-10. In vivo, Bregs-TLR interrupted donor-specific T cell expansion and induced Tregs in a TGF-ß-dependent manner. RNA-Seq analyses corroborated the involvement of TGF-ß pathways in Breg-TLR function, identified potential gene pathways implicated in preventing graft rejection, and suggested targets to foster Breg regulation.


Assuntos
Linfócitos B Reguladores , Aloenxertos , Animais , Linfócitos B Reguladores/metabolismo , Ativação Linfocitária , Camundongos , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Fator de Crescimento Transformador beta/metabolismo
12.
Nat Commun ; 13(1): 3837, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35788590

RESUMO

Single-cell analysis methods are valuable tools; however, current approaches do not easily enable live cell retrieval. That is a particular issue when further study of cells that were eliminated during experimentation could provide critical information. We report a clonal molecular barcoding method, called SunCatcher, that enables longitudinal tracking and live cell functional analysis. From complex cell populations, we generate single cell-derived clonal populations, infect each with a unique molecular barcode, and retain stocks of individual barcoded clones (BCs). We develop quantitative PCR-based and next-generation sequencing methods that we employ to identify and quantify BCs in vitro and in vivo. We apply SunCatcher to various breast cancer cell lines and combine respective BCs to create versions of the original cell lines. While the heterogeneous BC pools reproduce their original parental cell line proliferation and tumor progression rates, individual BCs are phenotypically and functionally diverse. Early spontaneous metastases can also be identified and quantified. SunCatcher thus provides a rapid and sensitive approach for studying live single-cell clones and clonal evolution, and performing functional analyses.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias , Linhagem Celular , Evolução Clonal/genética , Células Clonais , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Reação em Cadeia da Polimerase em Tempo Real
13.
Bioinformatics ; 38(14): 3645-3647, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35674381

RESUMO

SUMMARY: Diversity of the T-cell receptor (TCR) repertoire is central to adaptive immunity. The TCR is composed of α and ß chains, encoded by the TRA and TRB genes, of which the variable regions determine antigen specificity. To generate novel biological insights into the complex functioning of immune cells, combined capture of variable regions and single-cell transcriptomes provides a compelling approach. Recent developments enable the enrichment of TRA and TRB variable regions from widely used technologies for 3'-based single-cell RNA-sequencing (scRNA-seq). However, a comprehensive computational pipeline to process TCR-enriched data from 3' scRNA-seq is not available. Here, we present an analysis pipeline to process TCR variable regions enriched from 3' scRNA-seq cDNA. The tool reports TRA and TRB nucleotide and amino acid sequences linked to cell barcodes, enabling the reconstruction of T-cell clonotypes with associated transcriptomes. We demonstrate the software using peripheral blood mononuclear cells from a healthy donor and detect TCR sequences in a high proportion of single T cells. Detection of TCR sequences is low in non-T-cell populations, demonstrating specificity. Finally, we show that TCR clones are larger in CD8 Memory T cells than in other T-cell types, indicating an association between T-cell clonotypes and differentiation states. AVAILABILITY AND IMPLEMENTATION: The Workflow for Association of T-cell receptors from 3' single-cell RNA-seq (WAT3R), including test data, is available on GitHub (https://github.com/mainciburu/WAT3R), Docker Hub (https://hub.docker.com/r/mainciburu/wat3r) and a workflow on the Terra platform (https://app.terra.bio). The test dataset is available on GEO (accession number GSE195956). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Leucócitos Mononucleares , Receptores de Antígenos de Linfócitos T , Leucócitos Mononucleares/metabolismo , Receptores de Antígenos de Linfócitos T/química , Software , Células Clonais/metabolismo , RNA , Análise de Célula Única , Receptores de Antígenos de Linfócitos T alfa-beta/genética
14.
Blood Cancer Discov ; 3(4): 270-272, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35709709

RESUMO

Myelodysplastic syndrome (MDS) describes a family of blood disorders driven by the clonal expansion of mutated blood cells that can evolve into secondary acute myeloid leukemia (sAML). Two new studies use single-cell and deep sequencing to elucidate the progression of MDS to AML, revealing discrete clonal architectures and the driving role of signaling mutations.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Segunda Neoplasia Primária , Evolução Clonal/genética , Células Clonais , Humanos , Leucemia Mieloide Aguda/diagnóstico , Síndromes Mielodisplásicas/complicações , Segunda Neoplasia Primária/genética
15.
Nat Med ; 28(6): 1212-1223, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35618837

RESUMO

The treatment landscape of acute myeloid leukemia (AML) is evolving, with promising therapies entering clinical translation, yet patient responses remain heterogeneous, and biomarkers for tailoring treatment are lacking. To understand how disease heterogeneity links with therapy response, we determined the leukemia cell hierarchy makeup from bulk transcriptomes of more than 1,000 patients through deconvolution using single-cell reference profiles of leukemia stem, progenitor and mature cell types. Leukemia hierarchy composition was associated with functional, genomic and clinical properties and converged into four overall classes, spanning Primitive, Mature, GMP and Intermediate. Critically, variation in hierarchy composition along the Primitive versus GMP or Primitive versus Mature axes were associated with response to chemotherapy or drug sensitivity profiles of targeted therapies, respectively. A seven-gene biomarker derived from the Primitive versus Mature axis was associated with response to 105 investigational drugs. Cellular hierarchy composition constitutes a novel framework for understanding disease biology and advancing precision medicine in AML.


Assuntos
Leucemia Mieloide Aguda , Biomarcadores , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo
16.
Front Immunol ; 13: 809414, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359938

RESUMO

The immune system represents a major barrier to cancer progression, driving the evolution of immunoregulatory interactions between malignant cells and T-cells in the tumor environment. Blastic plasmacytoid dendritic cell neoplasm (BPDCN), a rare acute leukemia with plasmacytoid dendritic cell (pDC) differentiation, provides a unique opportunity to study these interactions. pDCs are key producers of interferon alpha (IFNA) that play an important role in T-cell activation at the interface between the innate and adaptive immune system. To assess how uncontrolled proliferation of malignant BPDCN cells affects the tumor environment, we catalog immune cell heterogeneity in the bone marrow (BM) of five healthy controls and five BPDCN patients by analyzing 52,803 single-cell transcriptomes, including 18,779 T-cells. We test computational techniques for robust cell type classification and find that T-cells in BPDCN patients consistently upregulate interferon alpha (IFNA) response and downregulate tumor necrosis factor alpha (TNFA) pathways. Integrating transcriptional data with T-cell receptor sequencing via shared barcodes reveals significant T-cell exhaustion in BPDCN that is positively correlated with T-cell clonotype expansion. By highlighting new mechanisms of T-cell exhaustion and immune evasion in BPDCN, our results demonstrate the value of single-cell multiomics to understand immune cell interactions in the tumor environment.


Assuntos
Transtornos Mieloproliferativos , Neoplasias Cutâneas , Células Dendríticas , Humanos , Interferon-alfa/metabolismo , Transtornos Mieloproliferativos/metabolismo , Neoplasias Cutâneas/patologia , Linfócitos T
18.
Nat Biotechnol ; 40(7): 1030-1034, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35210612

RESUMO

The combination of single-cell transcriptomics with mitochondrial DNA variant detection can be used to establish lineage relationships in primary human cells, but current methods are not scalable to interrogate complex tissues. Here, we combine common 3' single-cell RNA-sequencing protocols with mitochondrial transcriptome enrichment to increase coverage by more than 50-fold, enabling high-confidence mutation detection. The method successfully identifies skewed immune-cell expansions in primary human clonal hematopoiesis.


Assuntos
DNA Mitocondrial , Sequenciamento de Nucleotídeos em Larga Escala , DNA Mitocondrial/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mitocôndrias/genética , Mutação , Análise de Sequência de RNA , Análise de Célula Única
19.
Blood ; 139(6): 802-804, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35142852
20.
Blood ; 139(3): 357-368, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34855941

RESUMO

Chronic obstructive pulmonary disease (COPD) is associated with age and smoking, but other determinants of the disease are incompletely understood. Clonal hematopoiesis of indeterminate potential (CHIP) is a common, age-related state in which somatic mutations in clonal blood populations induce aberrant inflammatory responses. Patients with CHIP have an elevated risk for cardiovascular disease, but the association of CHIP with COPD remains unclear. We analyzed whole-genome sequencing and whole-exome sequencing data to detect CHIP in 48 835 patients, of whom 8444 had moderate to very severe COPD, from four separate cohorts with COPD phenotyping and smoking history. We measured emphysema in murine models in which Tet2 was deleted in hematopoietic cells. In the COPDGene cohort, individuals with CHIP had risks of moderate-to-severe, severe, or very severe COPD that were 1.6 (adjusted 95% confidence interval [CI], 1.1-2.2) and 2.2 (adjusted 95% CI, 1.5-3.2) times greater than those for noncarriers. These findings were consistently observed in three additional cohorts and meta-analyses of all patients. CHIP was also associated with decreased FEV1% predicted in the COPDGene cohort (mean between-group differences, -5.7%; adjusted 95% CI, -8.8% to -2.6%), a finding replicated in additional cohorts. Smoke exposure was associated with a small but significant increased risk of having CHIP (odds ratio, 1.03 per 10 pack-years; 95% CI, 1.01-1.05 per 10 pack-years) in the meta-analysis of all patients. Inactivation of Tet2 in mouse hematopoietic cells exacerbated the development of emphysema and inflammation in models of cigarette smoke exposure. Somatic mutations in blood cells are associated with the development and severity of COPD, independent of age and cumulative smoke exposure.


Assuntos
Hematopoiese Clonal , Doença Pulmonar Obstrutiva Crônica/genética , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Razão de Chances , Doença Pulmonar Obstrutiva Crônica/etiologia , Fatores de Risco , Fumar/efeitos adversos , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...