Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 71(7): 3942-50, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16000808

RESUMO

Lactobacillus reuteri strain ATCC 55730 (LB BIO) was isolated as a pure culture from a Reuteri tablet purchased from the BioGaia company. This probiotic strain produces a soluble glucan (reuteran), in which the majority of the linkages are of the alpha-(1-->4) glucosidic type ( approximately 70%). This reuteran also contains alpha-(1-->6)- linked glucosyl units and 4,6-disubstituted alpha-glucosyl units at the branching points. The LB BIO glucansucrase gene (gtfO) was cloned and expressed in Escherichia coli, and the GTFO enzyme was purified. The recombinant GTFO enzyme and the LB BIO culture supernatants synthesized identical glucan polymers with respect to linkage type and size distribution. GTFO thus is a reuteransucrase, responsible for synthesis of this reuteran polymer in LB BIO. The preference of GTFO for synthesizing alpha-(1-->4) linkages is also evident from the oligosaccharides produced from sucrose with different acceptor substrates, e.g., isopanose from isomaltose. GTFO has a relatively high hydrolysis/transferase activity ratio. Complete conversion of 100 mM sucrose by GTFO nevertheless yielded large amounts of reuteran, although more than 50% of sucrose was converted into glucose. This is only the second example of the isolation and characterization of a reuteransucrase and its reuteran product, both found in different L. reuteri strains. GTFO synthesizes a reuteran with the highest amount of alpha-(1-->4) linkages reported to date.


Assuntos
Glucanos/metabolismo , Glucosiltransferases/isolamento & purificação , Glucosiltransferases/metabolismo , Lactobacillus/enzimologia , Probióticos , Escherichia coli/enzimologia , Escherichia coli/genética , Glucanos/química , Glucosiltransferases/genética , Cinética , Lactobacillus/crescimento & desenvolvimento , Lactobacillus/isolamento & purificação , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA
2.
Microbiology (Reading) ; 150(Pt 11): 3681-3690, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15528655

RESUMO

Members of the genera Streptococcus and Leuconostoc synthesize various alpha-glucans (dextran, alternan and mutan). In Lactobacillus, until now, the only glucosyltransferase (GTF) enzyme that has been characterized is gtfA of Lactobacillus reuteri 121, the first GTF enzyme synthesizing a glucan (reuteran) that contains mainly alpha-(1-->4) linkages together with alpha-(1-->6) and alpha-(1-->4,6) linkages. Recently, partial sequences of glucansucrase genes were detected in other members of the genus Lactobacillus. This paper reports, for the first time, isolation and characterization of dextransucrase and mutansucrase genes and enzymes from various Lactobacillus species and the characterization of the glucan products synthesized, which mainly have alpha-(1-->6)- and alpha-(1-->3)-glucosidic linkages. The four GTF enzymes characterized from three different Lb. reuteri strains are highly similar at the amino acid level, and consequently their protein structures are very alike. Interestingly, these four Lb. reuteri GTFs have relatively large N-terminal variable regions, containing RDV repeats, and relatively short putative glucan-binding domains with conserved and less-conserved YG-repeating units. The three other GTF enzymes, isolated from Lactobacillus sakei, Lactobacillus fermentum and Lactobacillus parabuchneri, contain smaller variable regions and larger putative glucan-binding domains compared to the Lb. reuteri GTF enzymes.


Assuntos
Glucanos/biossíntese , Glucanos/química , Glicosiltransferases/genética , Lactobacillus/genética , Lactobacillus/metabolismo , Motivos de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Domínio Catalítico , Clonagem Molecular , DNA Bacteriano/química , DNA Bacteriano/isolamento & purificação , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Bacterianos , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Glicosiltransferases/metabolismo , Lactobacillus/enzimologia , Dados de Sequência Molecular , Filogenia , Sinais Direcionadores de Proteínas , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sequências Repetitivas de Aminoácidos , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Sacarase/genética , Sacarase/metabolismo
3.
Microbiology (Reading) ; 150(Pt 7): 2099-2112, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15256553

RESUMO

Lactobacillus reuteri strain 121 uses sucrose for synthesis of a unique, soluble glucan ('reuteran') with mainly alpha-(1-->4) glucosidic linkages. The gene (gtfA) encoding this glucansucrase enzyme had previously been characterized. Here, a detailed biochemical and molecular analysis of the GTFA enzyme is presented. This is believed to be the first report describing reuteransucrase enzyme kinetics and the oligosaccharides synthesized with various acceptors. Alignments of the GTFA sequence with glucansucrases from Streptococcus and Leuconostoc identified conserved amino-acid residues in the catalytic core critical for enzyme activity. Mutants Asp1024Asn, Glu1061Gln and Asp1133Asn displayed 300- to 1000-fold-reduced specific activities. To investigate the role of the relatively large N-terminal variable domain (702 amino acids) and the relatively short C-terminal putative glucan-binding domain (267 amino acids, with 11 YG repeats), various truncated derivatives of GTFA (1781 amino acids) were constructed and characterized. Deletion of the complete N-terminal variable domain of GTFA (GTFA-Delta N) had little effect on reuteran characteristics (size, distribution of glycosidic linkages), but the initial transferase activity of the mutant enzyme increased drastically. Sequential C-terminal deletions (up to six YG repeats) in GTFA-Delta N also had little effect on reuteran characteristics. However, enzyme kinetics drastically changed. Deletion of 7, 8 or 11 YG repeats resulted in dramatic loss of total enzyme activity (43-, 63- and 1000-fold-reduced specific activities, respectively). Characterization of sequential C-terminal deletion mutants of GTFA-Delta N revealed that the C-terminal domain of reuteransucrase has an important role in glucan binding.


Assuntos
Glucanos/metabolismo , Glicosiltransferases , Lactobacillus/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Deleção de Genes , Glicosiltransferases/química , Glicosiltransferases/genética , Glicosiltransferases/isolamento & purificação , Glicosiltransferases/metabolismo , Cinética , Lactobacillus/genética , Lactobacillus/crescimento & desenvolvimento , Maltose/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Sacarose/metabolismo
4.
FEBS Lett ; 560(1-3): 131-3, 2004 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-14988011

RESUMO

Bacterial fructosyltransferases (FTFs) are retaining-type glycosidases that belong to family 68 of glycoside hydrolases. Recently, the high-resolution 3D structure of the Bacillus subtilis levansucrase has been solved [Meng, G. and Futterer, K., Nat. Struct. Biol. 10 (2003) 935-941]. Based on this structure, the catalytic nucleophile, general acid/base catalyst, and transition state stabilizer were identified. However, a detailed characterization of site-directed mutants of the catalytic nucleophile has not been presented for any FTF enzyme. We have constructed site-directed mutants of the three putative catalytic residues of the Lactobacillus reuteri 121 levansucrase and inulosucrase and characterized the mutant proteins. Changing the putative catalytic nucleophiles D272 (inulosucrase) and D249 (levansucrase) into their amido counterparts resulted in a 1.5-4x10(5) times reduction of total sucrase activity.


Assuntos
Hexosiltransferases/química , Hexosiltransferases/genética , Lactobacillus/enzimologia , Lactobacillus/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos , Catálise , Dicroísmo Circular , Clonagem Molecular , Sequência Conservada , Escherichia coli/genética , Expressão Gênica , Genes Bacterianos , Hexosiltransferases/isolamento & purificação , Hexosiltransferases/metabolismo , Cinética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
5.
Appl Environ Microbiol ; 68(9): 4283-91, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12200277

RESUMO

Lactobacillus reuteri strain 121 produces a unique, highly branched, soluble glucan in which the majority of the linkages are of the alpha-(1-->4) glucosidic type. The glucan also contains alpha-(1-->6)-linked glucosyl units and 4,6-disubstituted alpha-glucosyl units at the branching points. Using degenerate primers, based on the amino acid sequences of conserved regions from known glucosyltransferase (gtf) genes from lactic acid bacteria, the L. reuteri strain 121 glucosyltransferase gene (gtfA) was isolated. The gtfA open reading frame (ORF) was 5,343 bp, and it encodes a protein of 1,781 amino acids with a deduced M(r) of 198,637. The deduced amino acid sequence of GTFA revealed clear similarities with other glucosyltransferases. GTFA has a relatively large variable N-terminal domain (702 amino acids) with five unique repeats and a relatively short C-terminal domain (267 amino acids). The gtfA gene was expressed in Escherichia coli, yielding an active GTFA enzyme. With respect to binding type and size distribution, the recombinant GTFA enzyme and the L. reuteri strain 121 culture supernatants synthesized identical glucan polymers. Furthermore, the deduced amino acid sequence of the gtfA ORF and the N-terminal amino acid sequence of the glucosyltransferase isolated from culture supernatants of L. reuteri strain 121 were the same. GTFA is thus responsible for the synthesis of the unique glucan polymer in L. reuteri strain 121. This is the first report on the molecular characterization of a glucosyltransferase from a Lactobacillus strain.


Assuntos
Glucanos/metabolismo , Glucosiltransferases/metabolismo , Lactobacillus/enzimologia , Sequência de Aminoácidos , DNA Bacteriano/análise , Escherichia coli , Expressão Gênica , Genes Bacterianos , Glucosiltransferases/genética , Lactobacillus/genética , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
6.
Appl Environ Microbiol ; 68(9): 4390-8, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12200292

RESUMO

Fructosyltransferase (FTF) enzymes produce fructose polymers (fructans) from sucrose. Here, we report the isolation and characterization of an FTF-encoding gene from Lactobacillus reuteri strain 121. A C-terminally truncated version of the ftf gene was successfully expressed in Escherichia coli. When incubated with sucrose, the purified recombinant FTF enzyme produced large amounts of fructo-oligosaccharides (FOS) with beta-(2-->1)-linked fructosyl units, plus a high-molecular-weight fructan polymer (>10(7)) with beta-(2-->1) linkages (an inulin). FOS, but not inulin, was found in supernatants of L. reuteri strain 121 cultures grown on medium containing sucrose. Bacterial inulin production has been reported for only Streptococcus mutans strains. FOS production has been reported for a few bacterial strains. This paper reports the first-time isolation and molecular characterization of (i) a Lactobacillus ftf gene, (ii) an inulosucrase associated with a generally regarded as safe bacterium, (iii) an FTF enzyme synthesizing both a high molecular weight inulin and FOS, and (iv) an FTF protein containing a cell wall-anchoring LPXTG motif. The biological relevance and potential health benefits of an inulosucrase associated with an L. reuteri strain remain to be established.


Assuntos
Hexosiltransferases/metabolismo , Inulina/metabolismo , Lactobacillus/enzimologia , Oligossacarídeos/metabolismo , Sequência de Aminoácidos , Escherichia coli/genética , Hexosiltransferases/genética , Lactobacillus/metabolismo , Dados de Sequência Molecular , Peso Molecular , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Sacarose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...