Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(11): 117001, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37774257

RESUMO

Josephson junctions in InAs nanowires proximitized with an Al shell can host gate-tunable Andreev bound states. Depending on the bound state occupation, the fermion parity of the junction can be even or odd. Coherent control of Andreev bound states has recently been achieved within each parity sector, but it is impeded by incoherent parity switches due to excess quasiparticles in the superconducting environment. Here, we show that we can polarize the fermion parity dynamically using microwave pulses by embedding the junction in a superconducting LC resonator. We demonstrate polarization up to 94%±1% (89%±1%) for the even (odd) parity as verified by single shot parity readout. Finally, we apply this scheme to probe the flux-dependent transition spectrum of the even or odd parity sector selectively, without any postprocessing or heralding.

2.
Phys Rev Lett ; 126(4): 047701, 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33576664

RESUMO

We investigate transmon qubits made from semiconductor nanowires with a fully surrounding superconducting shell. In the regime of reentrant superconductivity associated with the destructive Little-Parks effect, numerous coherent transitions are observed in the first reentrant lobe, where the shell carries 2π winding of superconducting phase, and are absent in the zeroth lobe. As junction density was increased by gate voltage, qubit coherence was suppressed then lost in the first lobe. These observations and numerical simulations highlight the role of winding-induced Andreev states in the junction.

3.
Phys Rev Lett ; 124(24): 246803, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32639819

RESUMO

We demonstrate strong suppression of charge dispersion in a semiconductor-based transmon qubit across Josephson resonances associated with a quantum dot in the junction. On resonance, dispersion is drastically reduced compared to conventional transmons with corresponding Josephson and charging energies. We develop a model of qubit dispersion for a single-channel resonance, which is in quantitative agreement with experimental data.

4.
Science ; 367(6485)2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32217701

RESUMO

Hybrid semiconductor-superconductor nanowires have emerged as a promising platform for realizing topological superconductivity (TSC). Here, we present a route to TSC using magnetic flux applied to a full superconducting shell surrounding a semiconducting nanowire core. Tunneling into the core reveals a hard induced gap near zero applied flux, corresponding to zero phase winding, and a gapped region with a discrete zero-energy state around one applied flux quantum, corresponding to 2π phase winding. Theoretical analysis indicates that the winding of the superconducting phase can induce a transition to a topological phase supporting Majorana zero modes. Measured Coulomb blockade peak spacing around one flux quantum shows a length dependence that is consistent with the existence of Majorana modes at the ends of the nanowire.

5.
Phys Rev Lett ; 124(5): 056801, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32083909

RESUMO

Creating a transmon qubit using semiconductor-superconductor hybrid materials not only provides electrostatic control of the qubit frequency, it also allows parts of the circuit to be electrically connected and disconnected in situ by operating a semiconductor region of the device as a field-effect transistor. Here, we exploit this feature to compare in the same device characteristics of the qubit, such as frequency and relaxation time, with related transport properties such as critical supercurrent and normal-state resistance. Gradually opening the field-effect transistor to the monitoring circuit allows the influence of weak-to-strong dc monitoring of a "live" qubit to be measured. A model of this influence yields excellent agreement with experiment, demonstrating a relaxation rate mediated by a gate-controlled environmental coupling.

6.
Phys Rev Lett ; 120(2): 029901, 2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29376728

RESUMO

This corrects the article DOI: 10.1103/PhysRevLett.119.116802.

7.
Phys Rev Lett ; 119(11): 116802, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28949231

RESUMO

Motivated by recent experiments with proximitized nanowires, we study a mesoscopic s-wave superconductor connected via point contacts to normal-state leads. We demonstrate that at energies below the charging energy the system is described by the two-channel Kondo model, which can be brought to the quantum critical regime by varying the gate potential and conductances of the contacts.

8.
Phys Rev Lett ; 115(12): 127002, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26431010

RESUMO

We report the realization of quantum microwave circuits using hybrid superconductor-semiconductor Josephson elements comprised of InAs nanowires contacted by NbTiN. Capacitively shunted single elements behave as transmon circuits with electrically tunable transition frequencies. Two-element circuits also exhibit transmonlike behavior near zero applied flux but behave as flux qubits at half the flux quantum, where nonsinusoidal current-phase relations in the elements produce a double-well Josephson potential. These hybrid Josephson elements are promising for applications requiring microwave superconducting circuits operating in a magnetic field.

9.
Phys Rev Lett ; 110(8): 086803, 2013 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-23473185

RESUMO

The fractionally charged quasiparticles appearing in the 5/2 fractional quantum Hall plateau are predicted to have an extra nonlocal degree of freedom, known as topological charge. We show how this topological charge can block the tunneling of these particles, and how such topological blockade can be used to read out their topological charge. We argue that the short time scale required for this measurement is favorable for the detection of the non-Abelian anyonic statistics of the quasiparticles. We also show how topological blockade can be used to measure braiding statistics, and to couple a topological qubit with a conventional one.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...