Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 48(49): 11692-8, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19899806

RESUMO

Propagation of bacteriophage T4 in its host Escherichia coli involves the folding of the major capsid protein gp23, which is facilitated by a hybrid chaperone complex consisting of the bacterial chaperonin GroEL and the phage-encoded co-chaperonin, gp31. It has been well established that the GroEL-gp31 complex is capable of folding gp23 whereas the homologous GroEL-GroES complex cannot perform this function. To assess whether this is a consequence of differences in the interactions of the proteins within the chaperonin complex, we have investigated the dissociation kinetics of GroEL-gp31 and GroEL-GroES complexes using Forster resonance energy transfer. Here we report that the dissociation of gp31 from GroEL is slightly faster than that of GroES from GroEL and is further accelerated by the binding of gp23. In contrast to what had been observed previously, we found that gp23 is able to interact with the GroEL-GroES complex, which might explain how bacteriophage T4 redirects the folding machinery of Escherichia coli during morphogenesis.


Assuntos
Bacteriófago T4/metabolismo , Chaperonina 60/metabolismo , Proteínas Virais/metabolismo , Bacteriófago T4/genética , Bacteriófago T4/crescimento & desenvolvimento , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Chaperonina 10/genética , Chaperonina 10/metabolismo , Chaperonina 60/genética , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Cinética , Dobramento de Proteína , Mapeamento de Interação de Proteínas , Proteínas Virais/genética
2.
J Am Chem Soc ; 128(14): 4694-702, 2006 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-16594706

RESUMO

It has been suggested that the bacterial GroEL chaperonin accommodates only one substrate at any given time, due to conformational changes to both the cis and trans ring that are induced upon substrate binding. Using electrospray ionization mass spectrometry, we show that indeed GroEL binds only one molecule of the model substrate Rubisco. In contrast, the capsid protein of bacteriophage T4, a natural GroEL substrate, can occupy both rings simultaneously. As these substrates are of similar size, the data indicate that each substrate induces distinct conformational changes in the GroEL chaperonin. The distinctive binding behavior of Rubisco and the capsid protein was further investigated using tandem mass spectrometry on the intact 800-914 kDa GroEL-substrate complexes. Our data suggest that even in the gas phase the substrates remain bound inside the GroEL cavity. The analysis revealed further that binding of Rubisco to the GroEL oligomer stabilizes the chaperonin complex significantly, whereas binding of one capsid protein did not have the same effect. However, addition of a second capsid protein molecule to GroEL resulted in a similar stabilizing effect to that obtained after the binding of a single Rubisco. On the basis of the stoichiometry of the GroEL chaperonin-substrate complex and the dissociation behavior of the two different substrates, we hypothesize that the binding of a single capsid polypeptide does not induce significant conformational changes in the GroEL trans ring, and hence the unoccupied GroEL ring remains accessible for a second capsid molecule.


Assuntos
Chaperonina 60/química , Chaperonina 60/metabolismo , Bacteriófago T4/química , Bacteriófago T4/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Chaperonina 10/química , Chaperonina 10/metabolismo , Chaperonina 60/biossíntese , Chaperonina 60/genética , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Moleculares , Conformação Proteica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Especificidade por Substrato
3.
J Mol Biol ; 358(3): 905-11, 2006 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-16549073

RESUMO

Bacteriophage T4 produces a GroES analogue, gp31, which cooperates with the Escherichia coli GroEL to fold its major coat protein gp23. We have used cryo-electron microscopy and image processing to obtain three-dimensional structures of the E.coli chaperonin GroEL complexed with gp31, in the presence of both ATP and ADP. The GroEL-gp31-ADP map has a resolution of 8.2 A, which allows accurate fitting of the GroEL and gp31 crystal structures. Comparison of this fitted structure with that of the GroEL-GroES-ADP structure previously determined by cryo-electron microscopy shows that the folding cage is expanded. The enlarged volume for folding is consistent with the size of the bacteriophage coat protein gp23, which is the major substrate of GroEL-gp31 chaperonin complex. At 56 kDa, gp23 is close to the maximum size limit of a polypeptide that is thought to fit inside the GroEL-GroES folding cage.


Assuntos
Chaperonina 60/química , Chaperonina 60/metabolismo , Dobramento de Proteína , Proteínas Virais/química , Proteínas Virais/metabolismo , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Chaperonina 10/química , Chaperonina 10/metabolismo , Chaperonina 10/ultraestrutura , Chaperonina 60/ultraestrutura , Escherichia coli/química , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Modelos Moleculares , Ligação Proteica , Estrutura Quaternária de Proteína , Homologia Estrutural de Proteína , Proteínas Virais/ultraestrutura
4.
Proc Natl Acad Sci U S A ; 102(23): 8144-9, 2005 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-15919824

RESUMO

The morphogenesis of bacteriophage T4 requires a specialized bacteriophage-encoded molecular chaperone (gp31) that is essential for the folding of the T4 major capsid protein (gp23). gp31 is related to GroES, the chaperonin of the Escherichia coli host because it displays a similar overall structure and properties. Why GroES is unable to fold the T4 capsid protein in conjunction with GroEL is unknown. Here we show that gp23 binds to the GroEL heptameric ring opposite to the ring that is bound by gp31 (the so-called trans-ring), while no binding to the trans-ring of the GroEL-GroES complex is observed. Although gp23 can be enclosed within the folding cage of the GroEL-gp31 complex, encapsulation within the GroEL-GroES complex is not possible. So it appears that folding of the T4 major capsid protein requires a gp31-dependent cis-folding mechanism likely inside an enlarged "Anfinsen cage" provided by GroEL and gp31.


Assuntos
Bacteriófago T4/química , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Chaperonas Moleculares/metabolismo , Dobramento de Proteína , Proteínas Virais/metabolismo , Bacteriófago T4/metabolismo , Chaperonina 10/metabolismo , Chaperonina 60/metabolismo , Chaperonas Moleculares/química , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Peptídeo Hidrolases/metabolismo , Ligação Proteica , Processamento de Proteína Pós-Traducional , Renaturação Proteica , Proteínas Virais/química
5.
Nat Methods ; 2(5): 371-6, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15846365

RESUMO

We have used native mass spectrometry to analyze macromolecular complexes involved in the chaperonin-assisted refolding of gp23, the major capsid protein of bacteriophage T4. Adapting the instrumental methods allowed us to monitor all intermediate complexes involved in the chaperonin folding cycle. We found that GroEL can bind up to two unfolded gp23 substrate molecules. Notably, when GroEL is in complex with the cochaperonin gp31, it binds exclusively one gp23. We also demonstrated that the folding and assembly of gp23 into 336-kDa hexamers by GroEL-gp31 can be monitored directly by electrospray ionization mass spectrometry (ESI-MS). These data reinforce the great potential of ESI-MS as a technique to investigate structure-function relationships of protein assemblies in general and the chaperonin-protein folding machinery in particular. A major advantage of native mass spectrometry is that, given sufficient resolution, it allows the analysis at the picomole level of sensitivity of heterogeneous protein complexes with molecular masses up to several million daltons.


Assuntos
Proteínas do Capsídeo/fisiologia , Chaperonina 60/fisiologia , Dobramento de Proteína , Espectrometria de Massas por Ionização por Electrospray/métodos , Bacteriófago T4/ultraestrutura , Chaperonina 10/fisiologia , Chaperoninas/fisiologia , Proteínas de Escherichia coli/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...