Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(7): e28487, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38596044

RESUMO

In this study, we assess the feasibility of using Fourier Transform Infrared Photoacoustic Spectroscopy (FTIR-PAS) to predict macro- and micro-nutrients in a diverse set of manures and digestates. Furthermore, the prediction capabilities of FTIR-PAS were assessed using a novel error tolerance-based interval method in view of the accuracy required for application in agricultural practices. Partial Least-Squares Regression (PLSR) was used to correlate the FTIR-PAS spectra with nutrient contents. The prediction results were then assessed with conventional assessment methods (root mean square error (RMSE), coefficient of determination R2, and the ratio of prediction to deviation (RPD)). The results show the potential of FTIR-PAS to be used as a rapid analysis technique, with promising prediction results (R2 > 0.91 and RPD >2.5) for all elements except for bicarbonate-extractable P, K, and NH4+-N (0.8 < R2 < 0.9 and 2 < RPD <2.5). The results for nitrogen and phosphorus were further evaluated using the proposed error tolerance-based interval method. The probability of prediction for nitrogen within the allowed limit is calculated to be 94.6 % and for phosphorus 83.8 %. The proposed error tolerance-based interval method provides a better measure to decide if the FTIR-PAS in its current state could be used to meet the required accuracy in agriculture for the quantification of nutrient content in manure and digestate.

2.
Sensors (Basel) ; 24(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38544205

RESUMO

Automated precision weed control requires visual methods to discriminate between crops and weeds. State-of-the-art plant detection methods fail to reliably detect weeds, especially in dense and occluded scenes. In the past, using hand-crafted detection models, both color (RGB) and depth (D) data were used for plant detection in dense scenes. Remarkably, the combination of color and depth data is not widely used in current deep learning-based vision systems in agriculture. Therefore, we collected an RGB-D dataset using a stereo vision camera. The dataset contains sugar beet crops in multiple growth stages with a varying weed densities. This dataset was made publicly available and was used to evaluate two novel plant detection models, the D-model, using the depth data as the input, and the CD-model, using both the color and depth data as inputs. For ease of use, for existing 2D deep learning architectures, the depth data were transformed into a 2D image using color encoding. As a reference model, the C-model, which uses only color data as the input, was included. The limited availability of suitable training data for depth images demands the use of data augmentation and transfer learning. Using our three detection models, we studied the effectiveness of data augmentation and transfer learning for depth data transformed to 2D images. It was found that geometric data augmentation and transfer learning were equally effective for both the reference model and the novel models using the depth data. This demonstrates that combining color-encoded depth data with geometric data augmentation and transfer learning can improve the RGB-D detection model. However, when testing our detection models on the use case of volunteer potato detection in sugar beet farming, it was found that the addition of depth data did not improve plant detection at high vegetation densities.


Assuntos
Plantas Daninhas , Controle de Plantas Daninhas , Humanos , Agricultura , Produtos Agrícolas , Açúcares
3.
Front Plant Sci ; 13: 838190, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35419014

RESUMO

Plant scientists and breeders require high-quality phenotypic data. However, obtaining accurate manual measurements for large plant populations is often infeasible, due to the high labour requirement involved. This is especially the case for more complex plant traits, like the traits defining the plant architecture. Computer-vision methods can help in solving this bottleneck. The current work focusses on methods using 3D point cloud data to obtain phenotypic datasets of traits related to the plant architecture. A first step is the segmentation of the point clouds into plant organs. One of the issues in point-cloud segmentation is that not all plant parts are equally represented in the data and that the segmentation performance is typically lower for minority classes than for majority classes. To address this class-imbalance problem, we used a common practice to divide large point clouds into chunks that were independently segmented and recombined later. In our case, the chunks were created by selecting anchor points and combining those with points in their neighbourhood. As a baseline, the anchor points were selected in a class-independent way, representing the class distribution in the original data. Then, we propose a class-dependent sampling strategy to battle class imbalance. The difference in segmentation performance between the class-independent and the class-dependent training set was analysed first. Additionally, the effect of the number of points selected as the neighbourhood was investigated. Smaller neighbourhoods resulted in a higher level of class balance, but also in a loss of context that was contained in the points around the anchor point. The overall segmentation quality, measured as the mean intersection-over-union (IoU), increased from 0.94 to 0.96 when the class-dependent training set was used. The biggest class improvement was found for the "node," for which the percentage of correctly segmented points increased by 46.0 percentage points. The results of the second experiment clearly showed that higher levels of class balance did not necessarily lead to better segmentation performance. Instead, the optimal neighbourhood size differed per class. In conclusion, it was demonstrated that our class-dependent sampling strategy led to an improved point-cloud segmentation method for plant phenotyping.

4.
Sensors (Basel) ; 14(4): 6032-44, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24681670

RESUMO

For robotic harvesting of sweet-pepper fruits in greenhouses a sensor system is required to detect and localize the fruits on the plants. Due to the complex structure of the plant, most fruits are (partially) occluded when an image is taken from one viewpoint only. In this research the effect of multiple camera positions and viewing angles on fruit visibility and detectability was investigated. A recording device was built which allowed to place the camera under different azimuth and zenith angles and to move the camera horizontally along the crop row. Fourteen camera positions were chosen and the fruit visibility in the recorded images was manually determined for each position. For images taken from one position only with the criterion of maximum 50% occlusion per fruit, the fruit detectability (FD) was in no case higher than 69%. The best single positions were the front views and looking with a zenith angle of 60° upwards. The FD increased when a combination was made of multiple viewpoint positions. With a combination of five favourite positions the maximum FD was 90%.


Assuntos
Capsicum/anatomia & histologia , Frutas/anatomia & histologia , Fotografação/instrumentação , Produtos Agrícolas/anatomia & histologia , Processamento de Imagem Assistida por Computador
5.
Sensors (Basel) ; 13(12): 16263-80, 2013 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-24287541

RESUMO

Fine-scale spatial information on soil properties is needed to successfully implement precision agriculture. Proximal gamma-ray spectroscopy has recently emerged as a promising tool to collect fine-scale soil information. The objective of this study was to evaluate a proximal gamma-ray spectrometer to predict several soil properties using energy-windows and full-spectrum analysis methods in two differently managed sandy loam fields: conventional and organic. In the conventional field, both methods predicted clay, pH and total nitrogen with a good accuracy (R2 ≥ 0.56) in the top 0-15 cm soil depth, whereas in the organic field, only clay content was predicted with such accuracy. The highest prediction accuracy was found for total nitrogen (R2 = 0.75) in the conventional field in the energy-windows method. Predictions were better in the top 0-15 cm soil depths than in the 15-30 cm soil depths for individual and combined fields. This implies that gamma-ray spectroscopy can generally benefit soil characterisation for annual crops where the condition of the seedbed is important. Small differences in soil structure (conventional vs. organic) cannot be determined. As for the methodology, we conclude that the energy-windows method can establish relations between radionuclide data and soil properties as accurate as the full-spectrum analysis method.


Assuntos
Agricultura/instrumentação , Agricultura/métodos , Solo/química , Espectrometria gama/instrumentação , Espectrometria gama/métodos , Raios gama , Concentração de Íons de Hidrogênio , Nitrogênio/química
6.
Plant Signal Behav ; 4(9): 824-9, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19847108

RESUMO

A novel approach to support the inspection of greenhouse crops is based on the measurement of volatile organic compounds emitted by unhealthy plants. This approach has attracted some serious interest over the last decade. In pursuit of this interest, we performed several experiments at the laboratory-scale to pinpoint marker volatiles that can be used to indicate certain health problems. In addition to these laboratory experiments, pilot and model studies were performed in order to verify the validity of these marker volatiles under real-world conditions. This paper provides an overview of results and gives an outlook on the use of plant volatiles for plant health monitoring.


Assuntos
Agricultura/instrumentação , Solanum lycopersicum/fisiologia , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo , Botrytis/fisiologia , Solanum lycopersicum/microbiologia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...