Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Funct Ecol ; 36(11): 2859-2872, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36632134

RESUMO

Herbivore densities can be regulated by bottom-up and top-down forces such as plant defences and natural enemies, respectively. These forces can interact with each other to increase plant protection against herbivores; however, how much complementarity exists between bottom-up and top-down forces still remains to be fully elucidated. Particularly, because plant defences can hinder natural enemies, how these interactions affect herbivore performance and dynamics remains elusive.To address this topic, we performed laboratory and greenhouse bioassays with herbivorous mite pests and predatory mites on mutant tomato plants that lack defensive hairs on stems and leaves. Particularly, we investigated the behaviour and population dynamics of different phytophagous mite species in the absence and presence of predatory mites.We show that predatory mites do not only perform better on tomatoes lacking defensive hairs but also that they can suppress herbivore densities better and faster on these hairless plants. Hence, top-down control of herbivores by natural enemies more than compensated the reduced bottom-up herbivore control by plant defences.Our results lead to the counter-intuitive insight that removing, instead of introducing, plant defence traits can result in superior protection against important pests through biological control. Read the free Plain Language Summary for this article on the Journal blog.

2.
Exp Appl Acarol ; 65(4): 419-33, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25524511

RESUMO

The predatory mite Amblyseius swirskii quickly became one of the most successful biocontrol agents in protected cultivation after its introduction into the market in 2005 and is now released in more than 50 countries. There are several key factors contributing to this success: (1) it can control several major pests including the western flower thrips, Frankliniella occidentalis, the whiteflies Bemisia tabaci and Trialeurodes vaporariorum and the broad mite, Polyphagotarsonemus latus, simultaneously in vegetables and ornamental crops; (2) it can develop and reproduce feeding on non-prey food sources such as pollen, which allows populations of the predator to build up on plants before the pests are present and to persist in the crop during periods when prey is scarce or absent; and (3) it can be easily reared on factitious prey, which allows economic mass production. However, despite the fact that A. swirskii provides growers with a robust control method, external demands were initially a key factor in promoting the use of this predator, particularly in Spain. In 2006, when exports of fresh vegetables from Spain were stopped due to the presence of pesticide residues, growers were forced to look for alternatives to chemical control. This resulted in the massive adoption of biological control-based integrated pest management programmes based on the use of A. swirskii in sweet pepper. Biological control increased from 5 % in 2005, 1 year before A. swirskii was commercially released, to almost 100 % of a total 6,000 ha of protected sweet pepper in Spain within 3 years. Later, it was demonstrated that A. swirskii was equally effective in other crops and countries, resulting in extensive worldwide use of A. swirskii in greenhouses.


Assuntos
Ácaros/fisiologia , Controle Biológico de Vetores/normas , Comportamento Predatório , Animais , Capsicum/crescimento & desenvolvimento , Comportamento Alimentar , Cadeia Alimentar , Hemípteros/fisiologia , Ácaros/crescimento & desenvolvimento , Espanha , Tisanópteros/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...