Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Genome Res ; 19(4): 611-25, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19179643

RESUMO

Budding yeast telomeres and cryptic mating-type loci are enriched at the nuclear envelope, forming foci that sequester silent information regulators (SIR factors), much as heterochromatic chromocenters in higher eukaryotes sequester HP1. Here we examine the impact of such subcompartments for regulating transcription genome-wide. We show that the efficiency of subtelomeric reporter gene repression depends not only on the strength of SIR factor recruitment by cis-acting elements, but also on the accumulation of SIRs in such perinuclear foci. To monitor the effects of disrupting this subnuclear compartment, we performed microarray analyses under conditions that eliminate telomere anchoring, while preserving SIR complex integrity. We found 60 genes reproducibly misregulated. Among those with increased expression, 22% were within 20 kb of a telomere, confirming that the nuclear envelope (NE) association of telomeres helps repress natural subtelomeric genes. In contrast, loci that were down-regulated were distributed over all chromosomes. Half of this ectopic repression was SIR complex dependent. We conclude that released SIR factors can promiscuously repress transcription at nontelomeric genes despite the presence of "anti-silencing" mechanisms. Bioinformatic analysis revealed that promoters bearing the PAC (RNA Polymerase A and C promoters) or Abf1 binding consenses are consistently down-regulated by mislocalization of SIR factors. Thus, the normal telomeric sequestration of SIRs both favors subtelomeric repression and prevents promiscuous effects at a distinct subset of promoters. This demonstrates that patterns of gene expression can be regulated by changing the spatial distribution of repetitive DNA sequences that bind repressive factors.


Assuntos
Regulação Fúngica da Expressão Gênica , Inativação Gênica , Elementos Reguladores de Transcrição/genética , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Telômero/fisiologia , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Biologia Computacional , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Genome Res ; 18(2): 261-71, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18096749

RESUMO

The 32 telomeres in the budding yeast genome cluster in three to seven perinuclear foci. Although individual telomeres and telomeric foci are in constant motion, preferential juxtaposition of some telomeres has been scored. To examine the principles that guide such long-range interactions, we differentially tagged pairs of chromosome ends and developed an automated three-dimensional measuring tool that determines distances between two telomeres. In yeast, all chromosomal ends terminate in TG(1-3) and middle repetitive elements, yet subgroups of telomeres also share extensive homology in subtelomeric coding domains. We find that up to 21 kb of >90% sequence identity does not promote telomere pairing in interphase cells. To test whether unique sequence elements, arm length, or chromosome territories influence juxtaposition, we reciprocally swapped terminal domains or entire chromosomal arms from one chromosome to another. We find that the distal 10 kb of Tel6R promotes interaction with Tel6L, yet only when the two telomeres are present on the same chromosome. By manipulating the length and sequence composition of the right arm of chr 5, we confirm that contact between telomeres on opposite chromatid arms of equal length is favored. These results can be explained by the polarized Rabl arrangement of yeast centromeres and telomeres, which promote to telomere pairing by allowing contact between chromosome arms of equal length in anaphase.


Assuntos
Cromossomos Fúngicos/genética , Troca Genética/genética , Regulação Fúngica da Expressão Gênica/genética , Saccharomyces cerevisiae/genética , Telômero/metabolismo , Southern Blotting , Eletroforese em Gel de Ágar , Microscopia de Fluorescência , Telômero/genética
3.
Nature ; 441(7094): 774-8, 2006 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-16760983

RESUMO

The organization of the nucleus into subcompartments creates microenvironments that are thought to facilitate distinct nuclear functions. In budding yeast, regions of silent chromatin, such as those at telomeres and mating-type loci, cluster at the nuclear envelope creating zones that favour gene repression. Other reports indicate that gene transcription occurs at the nuclear periphery, apparently owing to association of the gene with nuclear pore complexes. Here we report that transcriptional activation of a subtelomeric gene, HXK1 (hexokinase isoenzyme 1), by growth on a non-glucose carbon source led to its relocalization to nuclear pores. This relocation required the 3' untranslated region (UTR), which is essential for efficient messenger RNA processing and export, consistent with an accompanying report. However, activation of HXK1 by an alternative pathway based on the transactivator VP16 moved the locus away from the nuclear periphery and abrogated the normal induction of HXK1 by galactose. Notably, when we interfered with HXK1 localization by either antagonizing or promoting association with the pore, transcript levels were reduced or enhanced, respectively. From this we conclude that nuclear position has an active role in determining optimal gene expression levels.


Assuntos
Regulação Fúngica da Expressão Gênica/genética , Genes Fúngicos/genética , Poro Nuclear/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Regiões 3' não Traduzidas/genética , Galactose/metabolismo , Galactose/farmacologia , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Hexoquinase/genética , Isoenzimas/genética , Poro Nuclear/genética , RNA Fúngico/biossíntese , RNA Fúngico/genética , RNA Fúngico/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética
4.
EMBO J ; 25(4): 857-67, 2006 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-16467853

RESUMO

Yeast telomeres are anchored at the nuclear envelope (NE) through redundant pathways that require the telomere-binding factors yKu and Sir4. Significant variation is observed in the efficiency with which different telomeres are anchored, however, suggesting that other forces influence this interaction. Here, we show that subtelomeric elements and the insulator factors that bind them antagonize the association of telomeres with the NE. This is detectable when the redundancy in anchoring pathways is compromised. Remarkably, these same conditions lead to a reduction in steady-state telomere length in the absence of the ATM-kinase homologue Tel1. Both the delocalization of telomeres and reduction in telomere length can be induced by targeting of Tbf1 or Reb1, or the viral transactivator VP16, to a site 23 kb away from the TG repeat. This correlation suggests that telomere anchoring and a Tel1-independent pathway of telomere length regulation are linked, lending a functional significance to the association of yeast telomeres with the NE.


Assuntos
Cromossomos Fúngicos/metabolismo , Proteínas Fúngicas/metabolismo , Membrana Nuclear/metabolismo , Saccharomyces cerevisiae/metabolismo , Telômero/metabolismo , Cromossomos Fúngicos/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Repetições de Dinucleotídeos/fisiologia , Proteínas Fúngicas/genética , Proteína Vmw65 do Vírus do Herpes Simples/genética , Proteína Vmw65 do Vírus do Herpes Simples/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Membrana Nuclear/genética , Proteínas Serina-Treonina Quinases , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Telômero/genética
5.
J Cell Biol ; 168(3): 375-87, 2005 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-15684028

RESUMO

Long-range chromosome organization is known to influence nuclear function. Budding yeast centromeres cluster near the spindle pole body, whereas telomeres are grouped in five to eight perinuclear foci. Using live microscopy, we examine the relative positions of right and left telomeres of several yeast chromosomes. Integrated lac and tet operator arrays are visualized by their respective repressor fused to CFP and YFP in interphase yeast cells. The two ends of chromosomes 3 and 6 interact significantly but transiently, forming whole chromosome loops. For chromosomes 5 and 14, end-to-end interaction is less frequent, yet telomeres are closer to each other than to the centromere, suggesting that yeast chromosomes fold in a Rabl-like conformation. Disruption of telomere anchoring by deletions of YKU70 or SIR4 significantly compromises contact between two linked telomeres. These mutations do not, however, eliminate coordinated movement of telomere (Tel) 6R and Tel6L, which we propose stems from the territorial organization of yeast chromosomes.


Assuntos
Cromossomos Fúngicos/fisiologia , Saccharomyces cerevisiae/fisiologia , Telômero/fisiologia , Nucléolo Celular/fisiologia , Núcleo Celular/fisiologia , Proteínas de Ligação a DNA/genética , Recuperação de Fluorescência Após Fotodegradação , Fase G1/fisiologia , Deleção de Genes , Genótipo , Interfase/fisiologia , Proteínas Luminescentes/genética , Microscopia de Fluorescência , Proteínas Recombinantes de Fusão/genética , Proteínas Repressoras/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Fuso Acromático/fisiologia
6.
Curr Biol ; 12(24): 2076-89, 2002 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-12498682

RESUMO

BACKGROUND: The positioning of chromosomal domains within interphase nuclei is thought to facilitate transcriptional repression in yeast. Although this is particularly well characterized for telomeres, the molecular basis of their specific subnuclear organization is poorly understood. The use of live fluorescence imaging overcomes limitations of in situ staining on fixed cells and permits the analysis of chromatin dynamics in relation to stages of the cell cycle. RESULTS: We have characterized the dynamics of yeast telomeres and their associated domains of silent chromatin by using rapid time-lapse microscopy. In interphase, native telomeres are highly dynamic but remain within a restricted volume adjacent to the nuclear envelope. This constraint is lost during mitosis. A quantitative analysis of selected mutants shows that the yKu complex is necessary for anchoring some telomeres at the nuclear envelope (NE), whereas the myosin-like proteins Mlp1 and Mlp2 are not. We are able to correlate increased telomeric repression with increased anchoring and show that silent chromatin is tethered to the NE in a Sir-dependent manner in the absence of the yKu complex. Sir-mediated anchoring is S phase specific, while the yKu-mediated pathway functions throughout interphase. Subtelomeric elements of yeast telomere structure influence the relative importance of the yKu- and Sir-dependent mechanisms. CONCLUSIONS: Interphase positioning of telomeres can be achieved through two partially redundant mechanisms. One requires the heterodimeric yKu complex, but not Mlp1 and Mlp2. The second requires Silent information regulators, correlates with transcriptional repression, and is specific to S phase.


Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Telômero/fisiologia , Leveduras/genética , Núcleo Celular/genética , DNA Polimerase I/genética , DNA Polimerase I/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Fluorescência Verde , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Processamento de Imagem Assistida por Computador , Hibridização in Situ Fluorescente , Interfase/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência/métodos , Mitose/genética , Mutação , Fase S/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Sirtuína 2 , Sirtuínas/genética , Sirtuínas/metabolismo , Telômero/ultraestrutura , Leveduras/metabolismo
7.
Cell ; 109(5): 551-62, 2002 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-12062099

RESUMO

Chromatin boundary activities (BAs) were identified in Saccharomyces cerevisiae by genetic screening. Such BAs bound to sites flanking a reporter gene establish a nonsilenced domain within the silent mating-type locus HML. Interestingly, various proteins involved in nuclear-cytoplasmic traffic, such as exportins Cse1p, Mex67p, and Los1p, exhibit a robust BA. Genetic studies, immunolocalization, live imaging, and chromatin immunoprecipitation experiments show that these transport proteins block spreading of heterochromatin by physical tethering of the HML locus to the Nup2p receptor of the nuclear pore complex. Genetic deletion of NUP2 abolishes the BA of all transport proteins, while direct targeting of Nup2p to the bracketing DNA elements restores activity. The data demonstrate that physical tethering of genomic loci to the NPC can dramatically alter their epigenetic activity.


Assuntos
Transporte Ativo do Núcleo Celular/genética , Proteínas de Transporte/genética , Cromatina/genética , Genes/genética , Poro Nuclear/genética , Proteínas Nucleares , Transporte Proteico/genética , Saccharomyces cerevisiae/genética , Cromatina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Reporter/genética , Testes Genéticos , Biblioteca Genômica , Região de Controle de Locus Gênico/genética , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático , Ligação Proteica/genética , Estrutura Terciária de Proteína/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...