Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 62(23): ALS1-ALS4, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37707101

RESUMO

This feature issue highlights the latest developments in laser-based sensing and free space communications. In total, 15 papers were published in Applied Optics, including an invited review paper that celebrates the legacy of David L. Fried.

2.
Appl Opt ; 61(21): 6383-6390, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-36256254

RESUMO

Laser based optical applications such as imaging, ranging, and wireless communications are susceptible to environmental distortions. Inferring the strength of these optical distortions is crucial to obtaining information about the environment in which the system is operating. Our technique of inferring environmental distortion strength leverages the spreading of light's orbital angular momentum (OAM) spectrum combined with heterodyne detection. A laser encoded with OAM can be decomposed into a basis set of helical modes that spreads upon interaction with optical distortions. This mode spreading is quantified using the OAM spectrum that can be measured using mode projection or mode sorting techniques. This new technique, to the best of our knowledge, provides benefits compared to the latter two OAM detection methods such as: low-frequency noise rejection, a simpler optical receiver, lower noise floor, and an inherent optical phase component. Central to the method is the heterodyne detection of the zeroth-order OAM coefficient of a superimposed two-beam, two-frequency, probe. The measured heterodyne signal power is seen to be proportional to the coupling power of each beam's OAM spectra. To test the idea, wave-optic simulations and experiments using spatial light modulators are implemented using a simplified optical turbulence model to represent the environment. The experimental implementation agrees well with simulated and theoretical results.

3.
J Opt Soc Am A Opt Image Sci Vis ; 38(10): 1423-1437, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34612971

RESUMO

The study of beams carrying orbital angular momentum (OAM) has been of interest for its use in free-space optical communications (FSOC), directed energy applications, and remote sensing (RS). For FSOC and RS, it is necessary to measure the wavefront of the beam to recover transmitted or environmental information, respectively. In this computational study, common OAM beams such as the Laguerre-Gaussian (LG), Bessel-Gaussian (BG), and Bessel beams are propagated through atmospheric turbulence and compared to their Gaussian beam counterpart. The turbulence is simulated using multiple phase screens within the framework of a split-step method. Beam metrics used to quantify beam propagation will include the spatial coherence radius, OAM spectrum, on-axis intensity, spot size, divergence, and on-axis scintillation. Atmospheric turbulence along the path is limited to the weak scintillation limit, where beam parameters can be predicted analytically using the Rytov approximation. The results show that BG beams and multiplexed BG beams retain more OAM information than their LG and Bessel beam counterparts. The LG beam on-axis intensity and on-axis scintillation are seen to be independent of OAM mode. The scintillation of the LG beam is less than a BG, Bessel, and Gaussian beam across low- and high-order OAM modes. Insight into these results is discussed through studying the beam divergence, while the initial spot sizes of the Gaussian, LG, and BG beams are limited to the same spatial extent.

4.
Appl Opt ; 58(25): 6934-6941, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31503665

RESUMO

Optical turbulence can have a severe effect on the propagation of laser beams through the atmosphere. In free space optics and directed energy applications, these laser beams quite often propagate along a slant or vertical path. In these cases, the refractive index structure function parameter cannot be assumed constant, since it varies with height. How it varies with height, especially in the first few meters above the ground, is not well behaved. Turbulence height profiles have been measured since the 1970s, mainly for astronomical observations. These profiles are usually measured for the atmospheric boundary layer (the layer of air from the ground up to approx. 1 km during day and 100 m during night) and some kilometers above it. We have measured the temperature fluctuations in the first few meters above ground level using a system containing eight resistance thermometer devices, mounted in a row at different spacings. Measurements were made flying this system under a tethered balloon or mounted on a telescoping mast. The temperature structure function parameter, CT2, can be estimated from the temperature fluctuations measured by the 28 different probe pairs and the unique distances between the two probes. Finally, Cn2 is estimated from this temperature structure function parameter and compared to values predicted by a turbulence profile model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...