Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 26(4): 2368-2376, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32003939

RESUMO

Elevated atmospheric CO2 (eCO2 ) generally increases carbon input in rice paddy soils and stimulates the growth of methane-producing microorganisms. Therefore, eCO2 is widely expected to increase methane (CH4 ) emissions from rice agriculture, a major source of anthropogenic CH4 . Agricultural practices strongly affect CH4 emissions from rice paddies as well, but whether these practices modulate effects of eCO2 is unclear. Here we show, by combining a series of experiments and meta-analyses, that whereas eCO2 strongly increased CH4 emissions from paddies without straw incorporation, it tended to reduce CH4 emissions from paddy soils with straw incorporation. Our experiments also identified the microbial processes underlying these results: eCO2 increased methane-consuming microorganisms more strongly in soils with straw incorporation than in soils without straw, with the opposite pattern for methane-producing microorganisms. Accounting for the interaction between CO2 and straw management, we estimate that eCO2 increases global CH4 emissions from rice paddies by 3.7%, an order of magnitude lower than previous estimates. Our results suggest that the effect of eCO2 on CH4 emissions from rice paddies is smaller than previously thought and underline the need for judicious agricultural management to curb future CH4 emissions.

2.
Glob Chang Biol ; 25(2): 686-698, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30449058

RESUMO

Rice is a staple food for nearly half of the world's population, but rice paddies constitute a major source of anthropogenic CH4 emissions. Root exudates from growing rice plants are an important substrate for methane-producing microorganisms. Therefore, breeding efforts optimizing rice plant photosynthate allocation to grains, i.e., increasing harvest index (HI), are widely expected to reduce CH4 emissions with higher yield. Here we show, by combining a series of experiments, meta-analyses and an expert survey, that the potential of CH4 mitigation from rice paddies through HI improvement is in fact small. Whereas HI improvement reduced CH4 emissions under continuously flooded (CF) irrigation, it did not affect CH4 emissions in systems with intermittent irrigation (II). We estimate that future plant breeding efforts aimed at HI improvement to the theoretical maximum value will reduce CH4 emissions in CF systems by 4.4%. However, CF systems currently make up only a small fraction of the total rice growing area (i.e., 27% of the Chinese rice paddy area). Thus, to achieve substantial CH4 mitigation from rice agriculture, alternative plant breeding strategies may be needed, along with alternative management.


Assuntos
Poluentes Atmosféricos/análise , Produção Agrícola/métodos , Recuperação e Remediação Ambiental/métodos , Gases de Efeito Estufa/análise , Metano/análise , Poluição do Ar/prevenção & controle , Oryza/crescimento & desenvolvimento
4.
Glob Chang Biol ; 23(11): 4728-4738, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28464384

RESUMO

Breeding high-yielding rice cultivars through increasing biomass is a key strategy to meet rising global food demands. Yet, increasing rice growth can stimulate methane (CH4 ) emissions, exacerbating global climate change, as rice cultivation is a major source of this powerful greenhouse gas. Here, we show in a series of experiments that high-yielding rice cultivars actually reduce CH4 emissions from typical paddy soils. Averaged across 33 rice cultivars, a biomass increase of 10% resulted in a 10.3% decrease in CH4 emissions in a soil with a high carbon (C) content. Compared to a low-yielding cultivar, a high-yielding cultivar significantly increased root porosity and the abundance of methane-consuming microorganisms, suggesting that the larger and more porous root systems of high-yielding cultivars facilitated CH4 oxidation by promoting O2 transport to soils. Our results were further supported by a meta-analysis, showing that high-yielding rice cultivars strongly decrease CH4 emissions from paddy soils with high organic C contents. Based on our results, increasing rice biomass by 10% could reduce annual CH4 emissions from Chinese rice agriculture by 7.1%. Our findings suggest that modern rice breeding strategies for high-yielding cultivars can substantially mitigate paddy CH4 emission in China and other rice growing regions.


Assuntos
Agricultura/métodos , Gases de Efeito Estufa/metabolismo , Metano/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Biomassa , Carbono/análise , China , Gases de Efeito Estufa/análise , Metano/análise , Oryza/genética , Solo/química
6.
Glob Chang Biol ; 23(10): 4386-4395, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28391611

RESUMO

Climate change is predicted to shift temperature regimes in most agricultural areas with temperature changes expected to impact yields of most crops, including rice. These temperature-driven effects can be classified into point stresses, where a temperature event during a sensitive stage drives a reduction in yield, or seasonal warming losses, where raised temperature is thought to increase maintenance energy demands and thereby decrease available resources for yield formation. Simultaneous estimation of the magnitude of each temperature effect on yield has not been well documented due to the inherent difficulty in separating their effects. We simultaneously quantified the magnitude of each effect for a temperate rice production system using a large data set covering multiple locations with data collected from 1995 to 2015, combined with a unique probability-based modeling approach. Point stresses, primarily cold stress during the reproductive stages (booting and flowering), were found to have the largest impact on yield (over 3 Mg/ha estimated yield losses). Contrary to previous reports, yield losses caused by increased temperatures, both seasonal and during grain-filling, were found to be small (approximately 1-2% loss per °C). Occurrences of cool temperature events during reproductive stages were found to be persistent over the study period, and within season, the likelihood of a cool temperature event increased when flowering occurred later in the season. Short and medium grain types, typically recommended for cool regions, were found to be more tolerant of cool temperatures but more sensitive to heat compared to long grain cultivars. These results suggest that for temperate rice systems, the occurrence of periodic stress events may currently overshadow the impacts of general warming temperature on crop production.


Assuntos
Mudança Climática , Oryza/crescimento & desenvolvimento , Temperatura , Produtos Agrícolas , Estações do Ano
7.
J Environ Qual ; 45(5): 1501-1508, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27695745

RESUMO

Agricultural N fertilization is the dominant driver of increasing atmospheric nitrous oxide (NO) concentrations over the past half-century, yet there is considerable uncertainty in estimates of NO emissions from agriculture. Such estimates are typically based on the amount of N applied and a fertilizer-induced emission factor (EF), which is calculated as the difference in emissions between a fertilized plot and a zero-N control plot divided by the amount of N applied. A fertilizer-induced EF of 1% is currently recognized by the Intergovernmental Panel on Climate Change (IPCC) based on several studies analyzing published field measurements of NO emissions. Although many zero-N control plots used in these measurements received historical N applications, the potential for a residual impact of these inputs on NO emissions has been largely ignored and remains poorly understood. To address this issue, we compared NO emissions under laboratory conditions from soils sampled within zero-N control plots that had historically received N inputs versus soils from plots that had no N inputs for 20 yr. Historical N fertilization of zero-N control plots increased initial NO emissions by roughly one order of magnitude on average relative to historically unfertilized control plots. Higher NO emissions were positively correlated with extractable N and potentially mineralizable N. This finding suggests that accounting for fertilization history may help reduce the uncertainty associated with the IPCC fertilizer-induced EF and more accurately estimate the contribution of fertilizer N to agricultural NO emissions, although further research to demonstrate this relationship in the field is needed.


Assuntos
Fertilizantes , Óxido Nitroso/análise , Agricultura , Solo
8.
J Environ Qual ; 44(4): 1071-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26437088

RESUMO

Large CH and NO fluxes can occur from flooded rice ( L.) systems following end-of-season drainage, which contribute significantly to the total growing-season greenhouse gas (GHG) emissions. Field and laboratory studies were conducted to determine under what soil water conditions these emissions occur. In three field studies, GHG fluxes and dissolved CH in the soil pore water were measured before and after drainage. Across all fields, approximately 10% of the total seasonal CH emissions and 27% of the total seasonal NO emissions occurred following the final drain, confirming the importance of quantifying postdrainage CH and NO emissions. Preplant fertilizer N had no effect on CH emissions or dissolved CH; however, increased postdrainage NO fluxes were observed at higher N rates. To determine when postdrainage sampling needs to take place, our laboratory incubation study measured CH and NO fluxes from intact soil cores from these fields as the soil dried. Across fields, maximum CH emissions occurred at approximately 88% water-filled pore space (WFPS), but emissions were observed between 47 and 156% WFPS. In contrast, maximum NO emissions occurred between 45 and 71% WFPS and were observed between 16 and 109% WFPS. For all fields, gas samplings between 76 and 100% WFPS for CH emissions and between 43 and 78% WFPS for NO emissions was necessary to capture 95% of these postdrainage emissions. We recommend that frequent gas sampling following drainage be included in the GHG protocol of total GHG emissions.

9.
PLoS One ; 10(3): e0121432, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25822494

RESUMO

Around the world, peatland degradation and soil subsidence is occurring where these soils have been converted to agriculture. Since initial drainage in the mid-1800s, continuous farming of such soils in the California Sacramento-San Joaquin Delta (the Delta) has led to subsidence of up to 8 meters in places, primarily due to soil organic matter (SOM) oxidation and physical compaction. Rice (Oryza sativa) production has been proposed as an alternative cropping system to limit SOM oxidation. Preliminary research on these soils revealed high N uptake by rice in N fertilizer omission plots, which we hypothesized was the result of SOM oxidation releasing N. Testing this hypothesis, we developed a novel N budgeting approach to assess annual soil C and N loss based on plant N uptake and fallow season N mineralization. Through field experiments examining N dynamics during growing season and winter fallow periods, a complete annual N budget was developed. Soil C loss was calculated from SOM-N mineralization using the soil C:N ratio. Surface water and crop residue were negligible in the total N uptake budget (3 - 4 % combined). Shallow groundwater contributed 24 - 33 %, likely representing subsurface SOM-N mineralization. Assuming 6 and 25 kg N ha-1 from atmospheric deposition and biological N2 fixation, respectively, our results suggest 77 - 81 % of plant N uptake (129 - 149 kg N ha-1) was supplied by SOM mineralization. Considering a range of N uptake efficiency from 50 - 70 %, estimated net C loss ranged from 1149 - 2473 kg C ha-1. These findings suggest that rice systems, as currently managed, reduce the rate of C loss from organic delta soils relative to other agricultural practices.


Assuntos
Agricultura/estatística & dados numéricos , Ciclo do Carbono/fisiologia , Modelos Biológicos , Ciclo do Nitrogênio/fisiologia , Oryza/metabolismo , Solo/química , Agricultura/métodos , California , Carbono/farmacocinética , Nitrogênio/farmacocinética , Oryza/crescimento & desenvolvimento , Oxirredução
10.
J Environ Qual ; 44(1): 103-14, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25602325

RESUMO

An understanding of cultivar effects on field greenhouse gas (GHG) emissions in rice ( L.) systems is needed to improve the accuracy of predictive models used for estimating GHG emissions and to evaluate the GHG mitigation potential of different cultivars. We compared CH and NO emissions, global warming potential (GWP = NO + CH), yield-scaled GWP (GWP = GWP Mg grain), and plant growth characteristics of eight cultivars within four study sites in California and Arkansas. Nitrous oxide emissions were negligible (<10% of GWP) and were not different among cultivars. Seasonal CH emissions differed between cultivars by a factor of 2.1 and 1.4 at one California and one Arkansas site, respectively. Plant growth characteristics were generally not correlated with seasonal CH emissions; however, the strongest correlations were observed for shoot and total plant (root + shoot) biomass at heading ( = 0.60) at one California site and for grain at maturity ( = -0.95) at one Arkansas site. Although differences in GWP and GWP were observed, there were inconsistencies across sites, indicating the importance of the genotype × environment interaction. Overall, the cultivars with the lowest CH emissions, GWP, and GWP at the California and Arkansas sites were the lowest and highest yielding, respectively. These findings highlight the potential for breeding high-yielding cultivars with low GWP, the ideal scenario to achieve low GWP, but environmental conditions must also be considered.

11.
Glob Chang Biol ; 21(1): 407-17, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25099317

RESUMO

Agriculture is faced with the challenge of providing healthy food for a growing population at minimal environmental cost. Rice (Oryza sativa), the staple crop for the largest number of people on earth, is grown under flooded soil conditions and uses more water and has higher greenhouse gas (GHG) emissions than most crops. The objective of this study was to test the hypothesis that alternate wetting and drying (AWD--flooding the soil and then allowing to dry down before being reflooded) water management practices will maintain grain yields and concurrently reduce water use, greenhouse gas emissions and arsenic (As) levels in rice. Various treatments ranging in frequency and duration of AWD practices were evaluated at three locations over 2 years. Relative to the flooded control treatment and depending on the AWD treatment, yields were reduced by <1-13%; water-use efficiency was improved by 18-63%, global warming potential (GWP of CH4 and N2 O emissions) reduced by 45-90%, and grain As concentrations reduced by up to 64%. In general, as the severity of AWD increased by allowing the soil to dry out more between flood events, yields declined while the other benefits increased. The reduction in GWP was mostly attributed to a reduction in CH4 emissions as changes in N2 O emissions were minimal among treatments. When AWD was practiced early in the growing season followed by flooding for remainder of season, similar yields as the flooded control were obtained but reduced water use (18%), GWP (45%) and yield-scaled GWP (45%); although grain As concentrations were similar or higher. This highlights that multiple environmental benefits can be realized without sacrificing yield but there may be trade-offs to consider. Importantly, adoption of these practices will require that they are economically attractive and can be adapted to field scales.


Assuntos
Irrigação Agrícola/métodos , Agricultura/métodos , Arsênio/análise , Efeito Estufa/prevenção & controle , Oryza/química , Oryza/crescimento & desenvolvimento , Irrigação Agrícola/estatística & dados numéricos , Agricultura/estatística & dados numéricos , Arkansas , Dióxido de Carbono/metabolismo , Modelos Estatísticos , Sementes/química
12.
Nature ; 517(7534): 365-8, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25337882

RESUMO

One of the primary challenges of our time is to feed a growing and more demanding world population with reduced external inputs and minimal environmental impacts, all under more variable and extreme climate conditions in the future. Conservation agriculture represents a set of three crop management principles that has received strong international support to help address this challenge, with recent conservation agriculture efforts focusing on smallholder farming systems in sub-Saharan Africa and South Asia. However, conservation agriculture is highly debated, with respect to both its effects on crop yields and its applicability in different farming contexts. Here we conduct a global meta-analysis using 5,463 paired yield observations from 610 studies to compare no-till, the original and central concept of conservation agriculture, with conventional tillage practices across 48 crops and 63 countries. Overall, our results show that no-till reduces yields, yet this response is variable and under certain conditions no-till can produce equivalent or greater yields than conventional tillage. Importantly, when no-till is combined with the other two conservation agriculture principles of residue retention and crop rotation, its negative impacts are minimized. Moreover, no-till in combination with the other two principles significantly increases rainfed crop productivity in dry climates, suggesting that it may become an important climate-change adaptation strategy for ever-drier regions of the world. However, any expansion of conservation agriculture should be done with caution in these areas, as implementation of the other two principles is often challenging in resource-poor and vulnerable smallholder farming systems, thereby increasing the likelihood of yield losses rather than gains. Although farming systems are multifunctional, and environmental and socio-economic factors need to be considered, our analysis indicates that the potential contribution of no-till to the sustainable intensification of agriculture is more limited than often assumed.


Assuntos
Agricultura/métodos , Conservação dos Recursos Naturais/métodos , Produtos Agrícolas/crescimento & desenvolvimento , Clima , Mudança Climática , Eficiência , Abastecimento de Alimentos , Chuva , Solo
13.
Glob Chang Biol ; 20(5): 1382-93, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24115565

RESUMO

To meet growing global food demand with limited land and reduced environmental impact, agricultural greenhouse gas (GHG) emissions are increasingly evaluated with respect to crop productivity, i.e., on a yield-scaled as opposed to area basis. Here, we compiled available field data on CH4 and N2 O emissions from rice production systems to test the hypothesis that in response to fertilizer nitrogen (N) addition, yield-scaled global warming potential (GWP) will be minimized at N rates that maximize yields. Within each study, yield N surplus was calculated to estimate deficit or excess N application rates with respect to the optimal N rate (defined as the N rate at which maximum yield was achieved). Relationships between yield N surplus and GHG emissions were assessed using linear and nonlinear mixed-effects models. Results indicate that yields increased in response to increasing N surplus when moving from deficit to optimal N rates. At N rates contributing to a yield N surplus, N2 O and yield-scaled N2 O emissions increased exponentially. In contrast, CH4 emissions were not impacted by N inputs. Accordingly, yield-scaled CH4 emissions decreased with N addition. Overall, yield-scaled GWP was minimized at optimal N rates, decreasing by 21% compared to treatments without N addition. These results are unique compared to aerobic cropping systems in which N2 O emissions are the primary contributor to GWP, meaning yield-scaled GWP may not necessarily decrease for aerobic crops when yields are optimized by N fertilizer addition. Balancing gains in agricultural productivity with climate change concerns, this work supports the concept that high rice yields can be achieved with minimal yield-scaled GWP through optimal N application rates. Moreover, additional improvements in N use efficiency may further reduce yield-scaled GWP, thereby strengthening the economic and environmental sustainability of rice systems.


Assuntos
Agricultura/tendências , Aquecimento Global , Nitrogênio/metabolismo , Oryza/metabolismo , Poluentes Atmosféricos/análise , Fertilizantes/análise , Gases/análise , Efeito Estufa , Metano/metabolismo , Óxido Nitroso/metabolismo , Oryza/crescimento & desenvolvimento
14.
Glob Chang Biol ; 19(1): 33-44, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23504719

RESUMO

No-tillage and reduced tillage (NT/RT) management practices are being promoted in agroecosystems to reduce erosion, sequester additional soil C and reduce production costs. The impact of NT/RT on N2 O emissions, however, has been variable with both increases and decreases in emissions reported. Herein, we quantitatively synthesize studies on the short- and long-term impact of NT/RT on N2 O emissions in humid and dry climatic zones with emissions expressed on both an area- and crop yield-scaled basis. A meta-analysis was conducted on 239 direct comparisons between conventional tillage (CT) and NT/RT. In contrast to earlier studies, averaged across all comparisons, NT/RT did not alter N2 O emissions compared with CT. However, NT/RT significantly reduced N2 O emissions in experiments >10 years, especially in dry climates. No significant correlation was found between soil texture and the effect of NT/RT on N2 O emissions. When fertilizer-N was placed at ≥5 cm depth, NT/RT significantly reduced area-scaled N2 O emissions, in particular under humid climatic conditions. Compared to CT under dry climatic conditions, yield-scaled N2 O increased significantly (57%) when NT/RT was implemented <10 years, but decreased significantly (27%) after ≥10 years of NT/RT. There was a significant decrease in yield-scaled N2 O emissions in humid climates when fertilizer-N was placed at ≥5 cm depth. Therefore, in humid climates, deep placement of fertilizer-N is recommended when implementing NT/RT. In addition, NT/RT practices need to be sustained for a prolonged time, particularly in dry climates, to become an effective mitigation strategy for reducing N2 O emissions.


Assuntos
Agricultura , Clima , Nitrogênio/análise , Óxido Nitroso/análise
15.
J Environ Qual ; 42(6): 1623-34, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25602403

RESUMO

Drill seeded rice ( L.) is the dominant rice cultivation practice in the United States. Although drill seeded systems can lead to significant CH and NO emissions due to anaerobic and aerobic soil conditions, the relationship between high-yielding management practices, particularly fertilizer N management, and total global warming potential (GWP) remains unclear. We conducted three field experiments in California and Arkansas to test the hypothesis that by optimizing grain yield through N management, the lowest yield-scaled global warming potential (GWP = GWP Mg grain) is achieved. Each growing season, urea was applied at rates ranging from 0 to 224 kg N ha before the permanent flood. Emissions of CH and NO were measured daily to weekly during growing seasons and fallow periods. Annual CH emissions ranged from 9.3 to 193 kg CH-C ha yr across sites, and annual NO emissions averaged 1.3 kg NO-N ha yr. Relative to NO emissions, CH dominated growing season (82%) and annual (68%) GWP. The impacts of fertilizer N rates on GHG fluxes were confined to the growing season, with increasing N rate having little effect on CH emissions but contributing to greater NO emissions during nonflooded periods. The fallow period contributed between 7 and 39% of annual GWP across sites years. This finding illustrates the need to include fallow period measurements in annual emissions estimates. Growing season GWP ranged from 130 to 686 kg CO eq Mg season across sites and years. Fertilizer N rate had no significant effect on GWP; therefore, achieving the highest productivity is not at the cost of higher GWP.

16.
J Environ Qual ; 40(6): 1756-66, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22031558

RESUMO

Soil organic matter (SOM) is essential for sustaining food production and maintaining ecosystem services and is a vital resource base for storing C and N. The impact of long-term use of synthetic fertilizer N on SOM, however, has been questioned recently. Here we tested the hypothesis that long-term application of N results in a decrease in SOM. We used data from 135 studies of 114 long-term experiments located at 100 sites throughout the world over time scales of decades under a range of land-management and climate regimes to quantify changes in soil organic carbon (SOC) and soil organic nitrogen (SON). Published data of a total of 917 and 580 observations for SOC and SON, respectively, from control (unfertilized or zero N) and N-fertilized treatments (synthetic, organic, and combination) were analyzed using the SAS mixed model and by meta-analysis. Results demonstrate declines of 7 to 16% in SOC and 7 to 11% in SON with no N amendments. In soils receiving synthetic fertilizer N, the rate of SOM loss decreased. The time-fertilizer response ratio, which is based on changes in the paired comparisons, showed average increases of 8 and 12% for SOC and SON, respectively, following the application of synthetic fertilizer N. Addition of organic matter (i.e., manure) increased SOM, on average, by 37%. When cropping systems fluctuated between flooding and drying, SOM decreased more than in continuous dryland or flooded systems. Flooded rice ( L.) soils show net accumulations of SOC and SON. This work shows a general decline in SOM for all long-term sites, with and without synthetic fertilizer N. However, our analysis also demonstrates that in addition to its role in improving crop productivity, synthetic fertilizer N significantly reduces the rate at which SOM is declining in agricultural soils, worldwide.


Assuntos
Nitrogênio/química , Compostos Orgânicos/química , Solo/química , Agricultura/métodos , Carbono/química , Clima , Fertilizantes/análise
17.
Environ Pollut ; 159(2): 401-7, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21115216

RESUMO

We investigated the influence of elevated CO(2) and O(3) on soil N cycling within the soybean growing season and across soil environments (i.e., rhizosphere and bulk soil) at the Soybean Free Air Concentration Enrichment (SoyFACE) experiment in Illinois, USA. Elevated O(3) decreased soil mineral N likely through a reduction in plant material input and increased denitrification, which was evidenced by the greater abundance of the denitrifier gene nosZ. Elevated CO(2) did not alter the parameters evaluated and both elevated CO(2) and O(3) showed no interactive effects on nitrifier and denitrifier abundance, nor on total and mineral N concentrations. These results indicate that elevated CO(2) may have limited effects on N transformations in soybean agroecosystems. However, elevated O(3) can lead to a decrease in soil N availability in both bulk and rhizosphere soils, and this likely also affects ecosystem productivity by reducing the mineralization rates of plant-derived residues.


Assuntos
Ar/análise , Dióxido de Carbono/análise , Glycine max/metabolismo , Nitrogênio/metabolismo , Ozônio/análise , Microbiologia do Solo , Solo/análise , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biotransformação , Dióxido de Carbono/metabolismo , Nitratos/metabolismo , Ozônio/metabolismo , Compostos de Amônio Quaternário/metabolismo , Estações do Ano , Glycine max/crescimento & desenvolvimento , Glycine max/microbiologia
18.
J Environ Qual ; 39(1): 304-13, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20048318

RESUMO

Water quality concerns have arisen related to rice (Oryza sativa L.) field drain water, which has the potential to contribute large amounts of dissolved organic carbon (DOC) and total dissolved solids (TDS) to the Sacramento River. Field-scale losses of DOC or TDS have yet to be quantified. The objectives of this study were to evaluate the seasonal concentrations of DOC and TDS in rice field drain water and irrigation canals, quantify seasonal fluxes and flow-weighted (FW) concentrations of DOC and TDS, and determine the main drivers of DOC and TDS fluxes. Two rice fields with different straw management practices (incorporation vs. burning) were monitored at each of four locations in the Sacramento Valley. Fluxes of DOC ranged from 3.7 to 34.6 kg ha(-1) during the growing season (GS) and from 0 to 202 kg ha(-1) during the winter season (WS). Straw management had a significant interaction effect with season, as the greatest DOC concentrations were observed during winter flooding of straw incorporated fields. Fluxes and concentrations of TDS were not significantly affected by either straw management or season. Total seasonal water flux accounted for 90 and 88% of the variability in DOC flux during the GS and WS, respectively. Peak DOC concentrations occurred at the onset of drainflow; therefore, changes in irrigation management may reduce peak DOC concentrations and thereby DOC losses. However, the timing of peak DOC concentrations from rice fields suggest that rice field drainage water is not the cause of peak DOC concentrations in the Sacramento River.


Assuntos
Carbono/química , Oryza/fisiologia , Poluentes Químicos da Água/química , Água/química , Agricultura , California , Carbono/metabolismo , Monitoramento Ambiental , Estações do Ano
19.
J Environ Qual ; 38(2): 393-401, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19202010

RESUMO

Conventional wisdom postulates that leaching losses of N from agriculture systems are dominated by NO(3)(-). Although the export of dissolved organic nitrogen (DON) into the groundwater has been recognized for more than 100 yr, it is often ignored when total N budgets are constructed. Leaching of DON into stream and drinking water reservoirs leads to eutrophication and acidification, and can pose a potential risk to human health. The main objective of this review was to determine whether DON losses from agricultural systems are significant, and to what extent they pose a risk to human health and the environment. Dissolved organic N losses across agricultural systems varied widely with minimum losses of 0.3 kg DON ha(-1)yr(-1) in a pasture to a maximum loss of 127 kg DON ha(-1)yr(-1) in a grassland following the application of urine. The mean and median values for DON leaching losses were found to be 12.7 and 4.0 kg N ha(-1)yr(-1), respectively. On average, DON losses accounted for 26% of the total soluble N (NO(3)(-) plus DON) losses, with a median value of 19%. With a few exceptions, DON concentrations exceeded the criteria recommendations for drinking water quality. The extent of DON losses increased with increasing precipitation/irrigation, higher total inputs of N, and increasing sand content. It is concluded that DON leaching can be an important N loss pathway from agricultural systems. Models used to simulate and predict N losses from agricultural systems should include DON losses.


Assuntos
Agricultura , Nitratos/química , Poluentes Químicos da Água/análise , Poluição Química da Água/análise , Humanos , Nitrogênio/química , Solo/análise , Terminologia como Assunto
20.
J Environ Qual ; 37(2): 291-5, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18268290

RESUMO

Is nitrate harmful to humans? Are the current limits for nitrate concentration in drinking water justified by science? There is substantial disagreement among scientists over the interpretation of evidence on the issue. There are two main health issues: the linkage between nitrate and (i) infant methaemoglobinaemia, also known as blue baby syndrome, and (ii) cancers of the digestive tract. The evidence for nitrate as a cause of these serious diseases remains controversial. On one hand there is evidence that shows there is no clear association between nitrate in drinking water and the two main health issues with which it has been linked, and there is even evidence emerging of a possible benefit of nitrate in cardiovascular health. There is also evidence of nitrate intake giving protection against infections such as gastroenteritis. Some scientists suggest that there is sufficient evidence for increasing the permitted concentration of nitrate in drinking water without increasing risks to human health. However, subgroups within a population may be more susceptible than others to the adverse health effects of nitrate. Moreover, individuals with increased rates of endogenous formation of carcinogenic N-nitroso compounds are likely to be susceptible to the development of cancers in the digestive system. Given the lack of consensus, there is an urgent need for a comprehensive, independent study to determine whether the current nitrate limit for drinking water is scientifically justified or whether it could safely be raised.


Assuntos
Nitratos/toxicidade , Poluentes Químicos da Água/toxicidade , Abastecimento de Água , Regulamentação Governamental , Humanos , Metemoglobinemia/epidemiologia , Nitratos/normas , Medição de Risco , Neoplasias Gástricas/epidemiologia , Poluentes Químicos da Água/normas , Abastecimento de Água/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...