Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mov Ecol ; 11(1): 43, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37501192

RESUMO

BACKGROUND: Freshwater fish communities typically thrive in heterogenous ecosystems that offer various abiotic conditions. However, human impact increasingly leads to loss of this natural heterogeneity and its associated rich fish communities. To reverse this trend, we need guidelines on how to effectively restore or recreate habitats for multiple fish species. Lake Markermeer in the Netherlands is a human-created 70,000-ha lake with a uniform 4 m-water depth, steep shorelines, high wind-induced turbidity, and a declining fish community. In 2016, a forward-looking restoration project newly created a 1000-ha five-island archipelago in this degrading lake, which offered new sheltered shallow waters and deep sand excavations to the fish community. METHODS: In 2020, we assessed how omnivorous and piscivorous fish species used these new habitats by tracking 78 adult fish of five key species across local and lake-scales. We monitored spring arrival of adult fish and assessed local macro-invertebrate and young-of-the-year fish densities. RESULTS: Adult omnivorous Cyprinidae and piscivorous Percidae arrived at the archipelago in early spring, corresponding with expected spawning movements. During the productive summer season, 12 species of young-of-the-year fish appeared along the sheltered shorelines, with particularly high densities of common roach (Rutilus rutilus) and European perch (Perca fluviatilis). This suggests the sheltered, shallow, vegetated waters formed new suitable spawning and recruitment habitat for the fish community. Despite highest food densities for adult fish in the shallowest habitats (< 2-m), adult fish preferred minimally 2-m deep water. After spawning most Cyprinidae left the archipelago and moved long distances through the lake system, while most Percidae remained resident. This may be related to (1) high densities of young-of-the-year fish as food for piscivores, (2) medium food densities for omnivores compared to elsewhere in the lake-system, or (3) the attractiveness of 30-m deep sand excavations that were newly created and frequently used by one-third of all tracked fish. CONCLUSIONS: New littoral zones and a deep sand excavation constructed in a uniform shallow lake that lacked these habitat types attracted omnivorous and piscivorous fish species within four years. Both feeding guilds used the littoral zones for reproduction and nursery, and notably piscivorous fish became residents year-round.

2.
Water Res ; 235: 119915, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36996752

RESUMO

Land-water transition areas play a significant role in the functioning of aquatic ecosystems. However, anthropogenic pressures are posing severe threats on land-water transition areas, which leads to degradation of the ecological integrity of many lakes worldwide. Enhancing habitat complexity and heterogeneity by restoring land-water transition areas in lake systems is deemed a suitable method to restore lakes bottom-up by stimulating lower trophic levels. Stimulating productivity of lower trophic levels (phytoplankton, zooplankton) generates important food sources for declining higher trophic levels (fish, birds). Here, we study ecosystem restoration project Marker Wadden in Lake Markermeer, The Netherlands. This project involved the construction of a 700-ha archipelago of five islands in a degrading shallow lake, aiming to create additional sheltered land-water transition areas to stimulate food web development from its base by improving phytoplankton quantity and quality. We found that phytoplankton quantity (chlorophyll-a concentration) and quality (inversed carbon:nutrient ratio) in the shallow waters inside the Marker Wadden archipelago were significantly improved, likely due to higher nutrient availabilities, while light availability remained sufficient, compared to the surrounding lake. Higher phytoplankton quantity and quality was positively correlated with zooplankton biomass, which was higher inside the archipelago than in the surrounding lake due to improved trophic transfer efficiency between phytoplankton and zooplankton. We conclude that creating new land-water transition areas can be used to increase light and nutrient availabilities and thereby enhancing primary productivity, which in turn can stimulate higher trophic levels in degrading aquatic ecosystems.


Assuntos
Fitoplâncton , Zooplâncton , Animais , Ecossistema , Lagos , Água , Cadeia Alimentar , Biomassa
3.
Sci Total Environ ; 808: 152156, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-34864030

RESUMO

Wind-induced sediment resuspension in shallow lakes may enhance nutrient availability while reducing light availability for phytoplankton growth, thereby affecting the entire food-web. Lake restoration projects that reduce wind-induced resuspension are expected to enhance trophic transfer efficiencies, thereby improving food-web structure and functioning. Yet, reduced resuspension may also lead to lower nutrient concentrations in the water column, promote benthic algae development, reduce phytoplankton biomass production and thereby reduce secondary production by zooplankton. Lake Markermeer is a shallow delta lake in The Netherlands subject to wind-induced sediment resuspension. Restoration project Marker Wadden consists of newly built islands aiming to reduce sediment resuspension and promote higher trophic levels. Here, we tested the effects of reduced sediment resuspension on phytoplankton biomass build-up, benthic algae development, and zooplankton abundances at different temperatures in a 14-day indoor microcosm experiment. We used Marker Wadden sediment with three resuspension intensities combined with three temperatures, to also test effects of higher temperatures in shallow sheltered waters. Reduced sediment resuspension decreased nutrient concentrations and phytoplankton biomass build-up, while increasing light availability and enhancing benthic algae biomass development. Reduced sediment resuspension furthermore increased zooplankton biomass. Enhanced sediment resuspension and higher temperatures synergistically interacted, maintaining a high level of inorganic suspended solids. Our experimental results are in line with long-term seasonal observations from Lake Markermeer. Our findings demonstrate that for shallow lakes suffering from wind effects, measures such as Marker Wadden aimed at reducing sediment resuspension can be effective in restoring secondary production and supporting higher trophic levels.


Assuntos
Lagos , Fitoplâncton , Animais , Biomassa , Vento , Zooplâncton
4.
Sci Rep ; 10(1): 5626, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32221401

RESUMO

Biotic resistance mediated by native plant diversity has long been hypothesized to reduce the success of invading plant species in terrestrial systems in temperate regions. However, still little is known about the mechanisms driving invasion patterns in other biomes or latitudes. We help to fill this gap by investigating how native plant community presence and diversity, and the presence of native phylogenetically closely related species to an invader, would affect invader Hydrilla verticillata establishment success in tropical freshwater submerged plant communities. The presence of a native community suppressed the growth of H. verticillata, but did not prevent its colonisation. Invader growth was negatively affected by native plant productivity, but independent of native species richness and phylogenetic relatedness to the invader. Native plant production was not related to native species richness in our study. We show that resistance in these tropical aquatic submerged plant communities is mainly driven by the presence and biomass of a native community independent of native species diversity. Our study illustrates that resistance provided by these tropical freshwater submerged plant communities to invasive species contrasts to resistance described for other ecosystems. This emphasizes the need to include understudied systems when predicting patterns of species invasiveness and ecosystem invasibility across biomes.


Assuntos
Hydrocharitaceae/fisiologia , Fenômenos Bioquímicos/genética , Biodiversidade , Biomassa , Ecossistema , Água Doce , Hydrocharitaceae/genética , Espécies Introduzidas , Filogenia , Dinâmica Populacional
5.
Front Plant Sci ; 11: 58, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117394

RESUMO

The abundance and stoichiometry of aquatic plants are crucial for nutrient cycling and energy transfer in aquatic ecosystems. However, the interactive effects of multiple global environmental changes, including temperature rise and eutrophication, on aquatic plant stoichiometry and palatability remain largely unknown. Here, we hypothesized that (1) plant growth rates increase faster with rising temperature in nutrient-rich than nutrient-poor sediments; (2) plant carbon (C): nutrient ratios [nitrogen (N) and phosphorus (P)] respond differently to rising temperatures at contrasting nutrient conditions of the sediment; (3) external nutrient loading to the water column limits the growth of plants and decreases plant C:nutrient ratios; and that (4) changes in plant stoichiometry affect plant palatability. We used the common rooted submerged plant Vallisneria spiralis as a model species to test the effects of temperature and nutrient availability in both the sediment and the water column on plant growth and stoichiometry in a full-factorial experiment. The results confirmed that plants grew faster in nutrient-rich than nutrient-poor sediments with rising temperature, whereas external nutrient loading decreased the growth of plants due to competition by algae. The plant C: N and C: P ratios responded differently at different nutrient conditions to rising temperature. Rising temperature increased the metabolic rates of organisms, increased the nutrient availability in the sediment and enhanced plant growth. Plant growth was limited by a shortage of N in the nutrient-poor sediment and in the treatment with external nutrient loading to the water column, as a consequence, the limited plant growth caused an accumulation of P in the plants. Therefore, the effects of temperature on aquatic plant C:nutrient ratios did not only depend on the availability of the specific nutrients in the environment, but also on plant growth, which could result in either increased, unaltered or decreased plant C:nutrient ratios in response to temperature rise. Plant feeding trial assays with the generalist consumer Lymnaea stagnalis (Gastropoda) did not show effects of temperature or nutrient treatments on plant consumption rates. Overall, our results implicate that warming and eutrophication might interactively affect plant abundance and plant stoichiometry, and therefore influence nutrient cycling in aquatic ecosystems.

6.
PLoS One ; 13(9): e0204116, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30235261

RESUMO

Human induced eutrophication has strongly altered aquatic ecosystems. With increasing eutrophication, plant nutrient concentrations increase, making them more attractive as food for herbivores. However, most aquatic consumers are omnivorous. Ecological stoichiometry theory predicts that animals prefer to consume food which has a similar nutrient (N and P) composition or C:nutrient ratio compared to their own bodies, hence omnivorous animals may prefer to eat animal prey instead of plants. We asked whether aquatic omnivores would shift their diet towards more plant consumption when plants are more nutritious and their stoichiometry becomes more similar to the stoichiometry of the omnivore. We hypothesized that: (1) the omnivore increases plant consumption as the plant C:nutrient ratio decreases when there is only plant material available; (2) the omnivore generally prefers animal food over plant material; (3) the omnivore will increase its relative plant consumption as the plant C:nutrient ratio decreases, in the presence of animal food. As a model system, we used the pond snail Lymnaea stagnalis (omnivorous consumer), the aquatic plant Potamogeton lucens (plant food to the consumer, cultured at different nutrient regimes to obtain different plant C:nutrient ratios), and the crustacean Gammarus pulex (animal food to the consumer, using freshly dead individuals). When there was only plant material available, the consumers increased their relative consumption rate with decreasing plant C:nutrient ratio from no measurable amount to about 102 mg g-1 day-1. When plant material was offered simultaneously with animal food, even though the omnivores always preferred animal food over plant material, the omnivores still increased their relative intake of plant material as plant C:nutrient ratio decreased, from virtually nothing at the highest to on average 16% of their diet at the lowest plant C:nutrient ratio, with a maximum of 28%. Therefore, we conclude that as nutrient loading increases in aquatic ecosystems, plant-eating omnivorous animals may shift their trophic position towards increased plant consumption and alter the food web structure. As a result, we may observe increased top-down control on aquatic plants.


Assuntos
Organismos Aquáticos/fisiologia , Ecossistema , Comportamento Alimentar , Plantas , Animais , Carbono/análise , Comportamento de Escolha , Elementos Químicos , Nitrogênio/análise , Fósforo/análise
7.
Front Plant Sci ; 9: 153, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29487609

RESUMO

Many alien plants use animal vectors for dispersal of their diaspores (zoochory). If alien plants interact with native disperser animals, this can interfere with animal-mediated dispersal of native diaspores. Interference by alien species is known for frugivorous animals dispersing fruits of terrestrial plants by ingestion, transport and egestion (endozoochory). However, less attention has been paid to possible interference of alien plants with dispersal of diaspores via external attachment (ectozoochory, epizoochory or exozoochory), interference in aquatic ecosystems, or positive effects of alien plants on dispersal of native plants. This literature study addresses the following hypotheses: (1) alien plants may interfere with both internal and external animal-mediated dispersal of native diaspores; (2) interference also occurs in aquatic ecosystems; (3) interference of alien plants can have both negative and positive effects on native plants. The studied literature revealed that alien species can comprise large proportions of both internally and externally transported diaspores. Because animals have limited space for ingested and adhering diaspores, alien species affect both internal and external transport of native diaspores. Alien plant species also form large proportions of all dispersed diaspores in aquatic systems and interfere with dispersal of native aquatic plants. Alien interference can be either negative (e.g., through competition with native plants) or positive (e.g., increased abundance of native dispersers, changed disperser behavior or attracting additional disperser species). I propose many future research directions, because understanding whether alien plant species disrupt or facilitate animal-mediated dispersal of native plants is crucial for targeted conservation of invaded (aquatic) plant communities.

8.
Front Plant Sci ; 9: 134, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29479363

RESUMO

Invasive plant species are among the major threats to freshwater biodiversity. Few experimental studies have investigated whether native plant diversity can provide biotic resistance to invaders in freshwater ecosystems. At small spatial scales, invasion resistance may increase with plant species richness due to a better use of available resources, leaving less available for a potential invader (Complementarity effect) and/or the greater probability to have a highly competitive (or productive) native species in the community (Selection effect). In submerged aquatic plant communities, we tested the following hypotheses: (1) invader establishment success is greatest in the absence of a native plant community; (2) lower in plant communities with greater native species richness, due to complementary and/or selection effects; and (3) invader establishment success would be lowest in rooted plant communities, based on the limiting similarity theory as the invader is a rooted submerged species. In a greenhouse experiment, we established mesocosms planted with 0 (bare sediment), 1, 2, and 4 submerged plant species native to NW Europe and subjected these to the South African invader Lagarosiphon major (Ridl.) Moss. We used two rooted (Myriophyllum spicatum L., Potamogeton perfoliatus L.) and two non-rooted native species (Ceratophyllum demersum L., Utricularia vulgaris L.) representing two distinct functional groups considering their nutrient acquisition strategy which follows from their growth form, with, respectively, the sediment and water column as their main nutrient source. We found that the presence of native vegetation overall decreased the establishment success of an alien aquatic plant species. The strength of this observed biotic resistance increased with increasing species richness of the native community. Mainly due to a selection effect, the native biomass of mixed communities overyielded, and this further lowered the establishment success of the invader in our experiment. The strongest biotic resistance was caused by the two native plant species that were of the same functional group, i.e., functionally most similar to the invader. These results support the prediction of Elton's biotic resistance hypothesis in aquatic ecosystems and indicate that both species richness and functional group identity can play an important role in decreasing establishment success of alien plant species.

9.
Front Plant Sci ; 9: 1947, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30671079

RESUMO

Global warming is expected to strengthen herbivore-plant interactions leading to enhanced top-down control of plants. However, latitudinal gradients in plant quality as food for herbivores suggest lower palatability at higher temperatures, but the underlying mechanisms are still unclear. If plant palatability would decline with temperature rise, then this may question the expectation that warming leads to enhanced top-down control. Therefore, experiments that directly test plant palatability and the traits underlying palatability along a temperature gradient are needed. Here we experimentally tested the impact of temperature on aquatic plant growth, plant chemical traits (including stoichiometry) and plant palatability. We cultured three aquatic plant species at three temperatures (15, 20, and 25°C), measured growth parameters, determined chemical traits and performed feeding trial assays using the generalist consumer Lymnaea stagnalis (pond snail). We found that rising temperature significantly increased the growth of all three aquatic plants. Plant nitrogen (N) and phosphorus (P) content significantly decreased, and carbon (C):N and C:P stoichiometry increased as temperature increased, for both Potamogeton lucens and Vallisneria spiralis, but not for Elodea nuttallii. By performing the palatability test, we found that rising temperatures significantly decreased plant palatability in P. lucens, which could be explained by changes in the underlying chemical plant traits. In contrast, the palatability of E. nuttallii and V. spiralis was not affected by temperature. Overall, P. lucens and V. spiralis were always more palatable than E. nuttallii. We conclude that warming generally stimulates aquatic plant growth, whereas the effects on chemical plant traits and plant palatability are species-specific. These results suggest that the outcome of the impact of temperature rise on macrophyte stoichiometry and palatability from single-species studies may not be broadly applicable. In contrast, the plant species tested consistently differed in palatability, regardless of temperature, suggesting that palatability may be more strongly linked to species identity than to intraspecific variation in plant stoichiometry.

10.
Biol Lett ; 13(10)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28978756

RESUMO

In wetland ecosystems, birds and fish are important dispersal vectors for plants and invertebrates, but the consequences of their interactions as vectors are unknown. Darwin suggested that piscivorous birds carry out secondary dispersal of seeds and invertebrates via predation on fish. We tested this hypothesis in the great cormorant (Phalacrocorax carbo L.). Cormorants regurgitate pellets daily, which we collected at seven European locations and examined for intact propagules. One-third of pellets contained at least one intact plant seed, with seeds from 16 families covering a broad range of freshwater, marine and terrestrial habitats. Of 21 plant species, only two have an endozoochory dispersal syndrome, compared with five for water and eight for unassisted dispersal syndromes. One-fifth of the pellets contained at least one intact propagule of aquatic invertebrates from seven taxa. Secondary dispersal by piscivorous birds may be vital to maintain connectivity in meta-populations and between river catchments, and in the movement of plants and invertebrates in response to climate change. Secondary dispersal pathways associated with complex food webs must be studied in detail if we are to understand species movements in a changing world.


Assuntos
Distribuição Animal , Aves/fisiologia , Invertebrados , Dispersão de Sementes , Animais , Ecossistema , Europa (Continente) , Comportamento Alimentar , Peixes
12.
Ecol Evol ; 6(8): 2414-25, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27110352

RESUMO

Habitat fragmentation is a growing problem worldwide. Particularly in river systems, numerous dams and weirs hamper the movement of a wide variety of species. With the aim to preserve connectivity for fish, many barriers in river systems are equipped with fishways (also called fish passages or fish ladders). However, few fishways provide full connectivity. Here we hypothesized that restricted seasonal opening times of fishways can importantly reduce their effectiveness by interfering with the timing of fish migration, for both spring- and autumn-spawning species. We empirically tested our hypothesis, and discuss the possible eco-evolutionary consequences of affected migration timing. We analyzed movements of two salmonid fishes, spring-spawning European grayling (Thymallus thymallus) and autumn-spawning brown trout (Salmo trutta), in Norway's two largest river systems. We compared their timing of upstream passage through four fishways collected over 28 years with the timing of fish movements in unfragmented river sections as monitored by radiotelemetry. Confirming our hypothesis, late opening of fishways delayed the migration of European grayling in spring, and early closure of fishways blocked migration for brown trout on their way to spawning locations during late autumn. We show in a theoretical framework how restricted opening times of fishways can induce shifts from migratory to resident behavior in potamodromous partial migration systems, and propose that this can induce density-dependent effects among fish accumulating in lower regions of rivers. Hence, fragmentation may not only directly affect the migratory individuals in the population, but may also have effects that cascade downstream and alter circumstances for resident fish. Fishway functionality is inadequate if there is a mismatch between natural fish movements and fishway opening times in the same river system, with ecological and possibly evolutionary consequences for fish populations.

13.
Oecologia ; 170(1): 101-9, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22419480

RESUMO

Many small organisms in various life stages can be transported in the digestive system of larger vertebrates, a process known as endozoochory. Potential dispersal distances of these "propagules" are generally calculated after monitoring retrieval in experiments with resting vector animals. We argue that vectors in natural situations will be actively moving during effective transport rather than resting. We here test for the first time how physical activity of a vector animal might affect its dispersal efficiency. We compared digestive characteristics between swimming, wading (i.e. resting in water) and isolation (i.e. resting in a cage) mallards (Anas platyrhynchos). We fed plastic markers and aquatic gastropods, and monitored retrieval and survival of these propagules in the droppings over 24 h. Over a period of 5 h of swimming, mallards excreted 1.5 times more markers than when wading and 2.3 times more markers than isolation birds, the pattern being reversed over the subsequent period of monitoring where all birds were resting. Retention times of markers were shortened for approximately 1 h for swimming, and 0.5 h for wading birds. Shorter retention times imply higher survival of propagules at increased vector activity. However, digestive intensity measured directly by retrieval of snail shells was not a straightforward function of level of activity. Increased marker size had a negative effect on discharge rate. Our experiment indicates that previous estimates of propagule dispersal distances based on resting animals are overestimated, while propagule survival seems underestimated. These findings have implications for the dispersal of invasive species, meta-population structures and long distance colonization events.


Assuntos
Distribuição Animal , Cadeia Alimentar , Gastrópodes , Animais , Defecação , Patos , Sobrevida , Natação
14.
PLoS One ; 7(3): e32292, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22403642

RESUMO

Many plant seeds and invertebrates can survive passage through the digestive system of birds, which may lead to long distance dispersal (endozoochory) in case of prolonged retention by moving vectors. Endozoochorous dispersal by waterbirds has nowadays been documented for many aquatic plant seeds, algae and dormant life stages of aquatic invertebrates. Anecdotal information indicates that endozoochory is also possible for fully functional, active aquatic organisms, a phenomenon that we here address experimentally using aquatic snails. We fed four species of aquatic snails to mallards (Anas platyrhynchos), and monitored snail retrieval and survival over time. One of the snail species tested was found to survive passage through the digestive tract of mallards as fully functional adults. Hydrobia (Peringia) ulvae survived up to five hours in the digestive tract. This suggests a maximum potential transport distance of up to 300 km may be possible if these snails are taken by flying birds, although the actual dispersal distance greatly depends on additional factors such as the behavior of the vectors. We put forward that more organisms that acquired traits for survival in stochastic environments such as wetlands, but not specifically adapted for endozoochory, may be sufficiently equipped to successfully pass a bird's digestive system. This may be explained by a digestive trade-off in birds, which maximize their net energy intake rate rather than digestive efficiency, since higher efficiency comes with the cost of prolonged retention times and hence reduces food intake. The resulting lower digestive efficiency allows species like aquatic snails, and potentially other fully functional organisms without obvious dispersal adaptations, to be transported internally. Adopting this view, endozoochorous dispersal may be more common than up to now thought.


Assuntos
Migração Animal , Anseriformes/parasitologia , Organismos Aquáticos/fisiologia , Trato Gastrointestinal/parasitologia , Caramujos/fisiologia , Exoesqueleto/anatomia & histologia , Animais , Anseriformes/fisiologia , Ingestão de Alimentos , Feminino , Masculino , Caramujos/anatomia & histologia , Fatores de Tempo
15.
J Anim Ecol ; 76(1): 20-9, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17184349

RESUMO

1. Heterogeneity in food abundance allows a forager to concentrate foraging effort in patches that are rich in food. This might be problematic when food is cryptic, as the content of patches is unknown prior to foraging. In such case knowledge about the spatial pattern in the distribution of food might be beneficial as this enables a forager to estimate the content of surrounding patches. A forager can benefit from this pre-harvest information about the food distribution by regulating time in patches and/or movement between patches. 2. We conducted an experiment with mallard Anas platyrhynchos foraging in environments with random, regular, and clumped spatial configurations of full and empty patches. An assessment model was used to predict the time in patches for different spatial distributions, in which a mallard is predicted to remain in a patch until its potential intake rate drops to the average intake rate that can be achieved in the environment. A movement model was used to predict lengths of interpatch movements for different spatial distributions, in which a mallard is predicted to travel to the patch where it expects the highest intake rate. 3. Consistent with predictions, in the clumped distribution mallard spent less time in an empty patch when the previously visited neighbouring patch had been empty than when it had been full. This effect was not observed for the random distribution. This shows that mallard use pre-harvest information on spatial pattern to improve patch assessment. Patch assessment could not be evaluated for the regular distribution. 4. Movements that started in an empty patch were longer than movements that started in a full patch. Contrary to model predictions this effect was observed for all spatial distributions, rather than for the clumped distribution only. In this experiment mallard did not regulate movement in relation to pattern. 5. An explanation for the result that pre-harvest information on spatial pattern affected patch assessment rather than movement is that mallard move to the nearest patch where the expected intake rate is higher than the critical value, rather than to the patch where the highest intake rate is expected.


Assuntos
Patos/fisiologia , Ecossistema , Comportamento Alimentar/fisiologia , Animais , Feminino , Masculino , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...