Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Microbiol Infect ; 30(7): 850-857, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38467246

RESUMO

BACKGROUND: An accurate diagnosis of early-onset sepsis (EOS) is challenging because of subtle symptoms and the lack of a good diagnostic tool, resulting in considerable antibiotic overtreatment. A biomarker, discriminating between infected and non-infected newborns at an early stage of the disease, could improve EOS prediction. Numerous biomarkers have been tested, but have never been compared directly. OBJECTIVES: We aimed to provide a comprehensive overview of early biomarkers and their diagnostic value in maternal samples, umbilical cord blood, and neonatal serum. DATA SOURCES: PubMed-Medline, EMBASE, The Cochrane Library, and Web of Science were searched up to 1 March 2023, without restrictions on publication date, population, or language. STUDY ELIGIBILITY CRITERIA: Articles describing the diagnostic value of at least one biomarker in the detection of EOS in neonates, independent of gestational age, were included. ASSESSMENT OF RISK OF BIAS: The QUADAS-2 tool was used to assess study quality. METHODS OF DATA SYNTHESIS: Three independent researchers assessed the articles using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Meta-analysis was performed with all manuscripts describing diagnostic accuracy using a random-effects model. RESULTS: Of 2296 identified articles, 171 reports were included in the systematic review and 69 in the meta-analysis. Literature showed mixed and inconsistent evidence for most biomarkers and sample types, because of a lack of a uniform EOS case definition, small sample sizes, and large heterogeneity between studies. Interesting markers were procalcitonin (pooled sensitivity 79%, 95% CI 71-84%; specificity 91%, 95% CI 83-96%, n = 11) and interleukin (IL)-6 (pooled sensitivity 83%, 95% CI 71-90%; specificity 87%, 95% CI 78-93%, n = 8) in umbilical cord blood and presepsin (pooled sensitivity 82%, 95% CI 62-93%; specificity 86%, 95% CI 73-93%, n = 3) and serum amyloid A (pooled sensitivity 92%, 95% CI 75-98%; specificity 96%, 95% CI 78-99%, n = 4) in neonatal serum. Studies on the combination of biomarkers were scarce. CONCLUSIONS: A biomarker stand-alone test is currently not reliable for direct antibiotic stewardship in newborns, although several biomarkers show promising initial results. Further research into biomarker combinations could lead to an improved EOS diagnosis, reduce antibiotic overtreatment, and prevent associated health-related problems.


Assuntos
Biomarcadores , Sangue Fetal , Sepse Neonatal , Humanos , Biomarcadores/sangue , Recém-Nascido , Sangue Fetal/química , Feminino , Sepse Neonatal/diagnóstico , Sepse Neonatal/sangue , Gravidez , Sepse/diagnóstico , Sepse/sangue , Sensibilidade e Especificidade , Pró-Calcitonina/sangue
2.
Antibiotics (Basel) ; 12(3)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36978356

RESUMO

The difficulty in recognizing early-onset neonatal sepsis (EONS) in a timely manner due to non-specific symptoms and the limitations of diagnostic tests, combined with the risk of serious consequences if EONS is not treated in a timely manner, has resulted in a low threshold for starting empirical antibiotic treatment. New guideline strategies, such as the neonatal sepsis calculator, have been proven to reduce the antibiotic burden related to EONS, but lack sensitivity for detecting EONS. In this review, the potential of novel, targeted preventive and diagnostic methods for EONS is discussed from three different perspectives: maternal, umbilical cord and newborn perspectives. Promising strategies from the maternal perspective include Group B Streptococcus (GBS) prevention, exploring the virulence factors of GBS, maternal immunization and antepartum biomarkers. The diagnostic methods obtained from the umbilical cord are preliminary but promising. Finally, promising fields from the newborn perspective include biomarkers, new microbiological techniques and clinical prediction and monitoring strategies. Consensus on the definition of EONS and the standardization of research on novel diagnostic biomarkers are crucial for future implementation and to reduce current antibiotic overexposure in newborns.

3.
PLoS Pathog ; 14(8): e1007247, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30102741

RESUMO

The pathogen Mycobacterium tuberculosis employs a range of ESX-1 substrates to manipulate the host and build a successful infection. Although the importance of ESX-1 secretion in virulence is well established, the characterization of its individual components and the role of individual substrates is far from complete. Here, we describe the functional characterization of the Mycobacterium marinum accessory ESX-1 proteins EccA1, EspG1 and EspH, i.e. proteins that are neither substrates nor structural components. Proteomic analysis revealed that EspG1 is crucial for ESX-1 secretion, since all detectable ESX-1 substrates were absent from the cell surface and culture supernatant in an espG1 mutant. Deletion of eccA1 resulted in minor secretion defects, but interestingly, the severity of these secretion defects was dependent on the culture conditions. Finally, espH deletion showed a partial secretion defect; whereas several ESX-1 substrates were secreted in normal amounts, secretion of EsxA and EsxB was diminished and secretion of EspE and EspF was fully blocked. Interaction studies showed that EspH binds EspE and therefore could function as a specific chaperone for this substrate. Despite the observed differences in secretion, hemolytic activity was lost in all M. marinum mutants, implying that hemolytic activity is not strictly correlated with EsxA secretion. Surprisingly, while EspH is essential for successful infection of phagocytic host cells, deletion of espH resulted in a significantly increased virulence phenotype in zebrafish larvae, linked to poor granuloma formation and extracellular outgrowth. Together, these data show that different sets of ESX-1 substrates play different roles at various steps of the infection cycle of M. marinum.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium marinum/metabolismo , Mycobacterium marinum/patogenicidade , Sistemas de Secreção Tipo VII/genética , Fatores de Virulência/fisiologia , Animais , Proteínas de Bactérias/genética , Células Cultivadas , Embrião não Mamífero , Larva , Camundongos , Mycobacterium marinum/genética , Células RAW 264.7 , Ovinos , Sistemas de Secreção Tipo VII/metabolismo , Virulência/genética , Fatores de Virulência/genética , Peixe-Zebra/embriologia , Peixe-Zebra/crescimento & desenvolvimento
4.
Cell Microbiol ; 20(9): e12858, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29749044

RESUMO

Central nervous system (CNS) infection by Mycobacterium tuberculosis is one of the most devastating complications of tuberculosis, in particular in early childhood. In order to induce CNS infection, M. tuberculosis needs to cross specialised barriers protecting the brain. How M. tuberculosis crosses the blood-brain barrier (BBB) and enters the CNS is not well understood. Here, we use transparent zebrafish larvae and the closely related pathogen Mycobacterium marinum to answer this question. We show that in the early stages of development, mycobacteria rapidly infect brain tissue, either as free mycobacteria or within circulating macrophages. After the formation of a functionally intact BBB, the infiltration of brain tissue by infected macrophages is delayed, but not blocked, suggesting that crossing the BBB via phagocytic cells is one of the mechanisms used by mycobacteria to invade the CNS. Interestingly, depletion of phagocytic cells did not prevent M. marinum from infecting the brain tissue, indicating that free mycobacteria can independently cause brain infection. Detailed analysis showed that mycobacteria are able to cause vasculitis by extracellular outgrowth in the smaller blood vessels and by infecting endothelial cells. Importantly, we could show that this second mechanism is an active process that depends on an intact ESX-1 secretion system, which extends the role of ESX-1 secretion beyond the macrophage infection cycle.


Assuntos
Barreira Hematoencefálica/microbiologia , Infecções do Sistema Nervoso Central/patologia , Interações Hospedeiro-Patógeno , Infecções por Mycobacterium não Tuberculosas/patologia , Mycobacterium marinum/crescimento & desenvolvimento , Animais , Encéfalo/microbiologia , Modelos Animais de Doenças , Macrófagos/microbiologia , Peixe-Zebra
5.
J Biol Chem ; 291(22): 11787-99, 2016 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-27044743

RESUMO

Mycobacterium tuberculosis is protected by an unusual and highly impermeable cell envelope that is critically important for the successful colonization of the host. The outermost surface of this cell envelope is formed by capsular polysaccharides that play an important role in modulating the initial interactions once the bacillus enters the body. Although the bioenzymatic steps involved in the production of the capsular polysaccharides are emerging, information regarding the ability of the bacterium to modulate the composition of the capsule is still unknown. Here, we study the mechanisms involved in regulation of mycobacterial capsule biosynthesis using a high throughput screen for gene products involved in capsular α-glucan production. Utilizing this approach we identified a group of mutants that all carried mutations in the ATP-binding cassette phosphate transport locus pst These mutants collectively exhibited a strong overproduction of capsular polysaccharides, including α-glucan and arabinomannan, suggestive of a role for inorganic phosphate (Pi) metabolism in modulating capsular polysaccharide production. These findings were corroborated by the observation that growth under low Pi conditions as well as chemical activation of the stringent response induces capsule production in a number of mycobacterial species. This induction is, in part, dependent on σ factor E. Finally, we show that Mycobacterium marinum, a model organism for M. tuberculosis, encounters Pi stress during infection, which shows the relevance of our findings in vivo.


Assuntos
Cápsulas Bacterianas/metabolismo , Embrião não Mamífero/metabolismo , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Mycobacterium marinum/efeitos dos fármacos , Fosfatos/farmacologia , Polissacarídeos/metabolismo , Animais , Cápsulas Bacterianas/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/microbiologia , Infecções por Mycobacterium não Tuberculosas/microbiologia , Peixe-Zebra
6.
Cold Spring Harb Perspect Med ; 5(3): a018580, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25414379

RESUMO

Over the past decade the zebrafish (Danio rerio) has become an attractive new vertebrate model organism for studying mycobacterial pathogenesis. The combination of medium-throughput screening and real-time in vivo visualization has allowed new ways to dissect host pathogenic interaction in a vertebrate host. Furthermore, genetic screens on the host and bacterial sides have elucidated new mechanisms involved in the initiation of granuloma formation and the importance of a balanced immune response for control of mycobacterial pathogens. This article will highlight the unique features of the zebrafish-Mycobacterium marinum infection model and its added value for tuberculosis research.


Assuntos
Modelos Animais de Doenças , Tuberculose/fisiopatologia , Peixe-Zebra/microbiologia , Animais , Infecções por Mycobacterium não Tuberculosas/fisiopatologia
7.
Dis Model Mech ; 7(9): 1111-22, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24997190

RESUMO

Tuberculous meningitis (TBM) is one of the most severe extrapulmonary manifestations of tuberculosis, with a high morbidity and mortality. Characteristic pathological features of TBM are Rich foci, i.e. brain- and spinal-cord-specific granulomas formed after hematogenous spread of pulmonary tuberculosis. Little is known about the early pathogenesis of TBM and the role of Rich foci. We have adapted the zebrafish model of Mycobacterium marinum infection (zebrafish-M. marinum model) to study TBM. First, we analyzed whether TBM occurs in adult zebrafish and showed that intraperitoneal infection resulted in granuloma formation in the meninges in 20% of the cases, with occasional brain parenchyma involvement. In zebrafish embryos, bacterial infiltration and clustering of infected phagocytes was observed after infection at three different inoculation sites: parenchyma, hindbrain ventricle and caudal vein. Infection via the bloodstream resulted in the formation of early granulomas in brain tissue in 70% of the cases. In these zebrafish embryos, infiltrates were located in the proximity of blood vessels. Interestingly, no differences were observed when embryos were infected before or after early formation of the blood-brain barrier (BBB), indicating that bacteria are able to cross this barrier with relatively high efficiency. In agreement with this observation, infected zebrafish larvae also showed infiltration of the brain tissue. Upon infection of embryos with an M. marinum ESX-1 mutant, only small clusters and scattered isolated phagocytes with high bacterial loads were present in the brain tissue. In conclusion, our adapted zebrafish-M. marinum infection model for studying granuloma formation in the brain will allow for the detailed analysis of both bacterial and host factors involved in TBM. It will help solve longstanding questions on the role of Rich foci and potentially contribute to the development of better diagnostic tools and therapeutics.


Assuntos
Modelos Animais de Doenças , Mycobacterium marinum/fisiologia , Tuberculose Meníngea/microbiologia , Animais , Barreira Hematoencefálica , Infecções por Mycobacterium não Tuberculosas/microbiologia , Peixe-Zebra
8.
Cell Microbiol ; 15(12): 2093-108, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23902464

RESUMO

The causative agent of tuberculosis (TB), Mycobacterium tuberculosis, remains an important worldwide health threat. Although TB is one of the oldest infectious diseases of man, a detailed understanding of the mycobacterial mechanisms underlying pathogenesis remains elusive. Here, we studied the role of the α(1→2) mannosyltransferase MptC in mycobacterial virulence, using the Mycobacterium marinum zebrafish infection model. Like its M. tuberculosis orthologue, disruption of M. marinum mptC (mmar_3225) results in defective elongation of mannose caps of lipoarabinomannan (LAM) and absence of α(1→2)mannose branches on the lipomannan (LM) and LAM mannan core, as determined by biochemical analysis (NMR and GC-MS) and immunoblotting. We found that the M. marinum mptC mutant is strongly attenuated in embryonic zebrafish, which rely solely on innate immunity, whereas minor virulence defects were observed in adult zebrafish. Strikingly, complementation with the Mycobacterium smegmatis mptC orthologue, which restored mannan core branching but not cap elongation, was sufficient to fully complement the virulence defect of the mptC mutant in embryos. Altogether our data demonstrate that not LAM capping, but mannan core branching of LM/LAM plays an important role in mycobacterial pathogenesis in the context of innate immunity.


Assuntos
Lipopolissacarídeos/metabolismo , Mycobacterium marinum/imunologia , Mycobacterium marinum/patogenicidade , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Animais , Carga Bacteriana , Imunidade Inata , Lipopolissacarídeos/química , Manose/química , Infecções por Mycobacterium não Tuberculosas/imunologia , Mycobacterium marinum/genética , Mycobacterium smegmatis/patogenicidade , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/patogenicidade , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Tuberculose/imunologia , Peixe-Zebra/imunologia , Peixe-Zebra/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...