Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 13: 960958, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36226192

RESUMO

Massive defaunation and high extinction rates have become characteristic of the Anthropocene. Genetic effects of population decline can lead populations into an extinction vortex, where declining populations show lower genetic fitness, in turn leading to lower populations still. The lower genetic fitness in a declining population due to a shrinking gene pool is known as genetic erosion. Three different types of genetic erosion are highlighted in this review: overall homozygosity, genetic load and runs of homozygosity (ROH), which are indicative of inbreeding. The ability to quantify genetic erosion could be a very helpful tool for conservationists, as it can provide them with an objective, quantifiable measure to use in the assessment of species at risk of extinction. The link between conservation status and genetic erosion should become more apparent. Currently, no clear correlation can be observed between the current conservation status and genetic erosion. However, the high quantities of genetic erosion in wild populations, especially in those species dealing with habitat fragmentation and habitat decline, may be early signs of deteriorating populations. Whole genome sequencing data is the way forward to quantify genetic erosion. Extra screening steps for genetic load and hybridization can be included, since they could potentially have great impact on population fitness. This way, the information yielded from genetic sequence data can provide conservationists with an objective genetic method in the assessment of species at risk of extinction. However, the great complexity of genome erosion quantification asks for consensus and bridging science and its applications, which remains challenging.

2.
Environ Toxicol Chem ; 41(7): 1686-1695, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35611556

RESUMO

Recently, the high toxicity of neonicotinoids to the survival and reproduction of adult earthworms has become apparent in standard 56-day toxicity tests. The persistence of some neonicotinoids and/or their repeated application may lead to long-term exposure, possibly also affecting other parts of the life cycle of earthworms. The present study aimed at providing insight into the sublethal effects of imidacloprid, thiacloprid, and clothianidin on juvenile Eisenia andrei exposed for 16 weeks in Lufa 2.2 soil. Significant effects on growth and maturation were observed for all compounds. Exposure to 0.125 mg imidacloprid/kg dry soil and 0.03125 and 0.0625 mg thiacloprid/kg dry soil significantly affected the growth of the earthworms, while significant maturation effects were observed at 0.03125 mg/kg dry soil for imidacloprid and thiacloprid and 0.25 mg clothianidin/kg dry soil. The 16-week no-observed-effect concentrations (NOECs) found in the present study were lower than previously reported NOECs for effects on earthworm reproduction. Predicted environmental concentrations after a single application exceeded the observed NOECs for effects on earthworm maturation in the case of imidacloprid and thiacloprid and for effects on earthworm growth in the case of thiacloprid and clothianidin. Environ Toxicol Chem 2022;41:1686-1695. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Inseticidas , Oligoquetos , Poluentes do Solo , Animais , Crescimento e Desenvolvimento , Guanidinas , Inseticidas/química , Neonicotinoides/toxicidade , Nitrocompostos , Solo/química , Poluentes do Solo/química , Poluentes do Solo/toxicidade , Tiazinas , Tiazóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...