Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37229460

RESUMO

Introduction: Deep learning (DL) models are increasingly developed for auto-segmentation in radiotherapy. Qualitative analysis is of great importance for clinical implementation, next to quantitative. This study evaluates a DL segmentation model for left- and right-sided locally advanced breast cancer both quantitatively and qualitatively. Methods: For each side a DL model was trained, including primary breast CTV (CTVp), lymph node levels 1-4, heart, lungs, humeral head, thyroid and esophagus. For evaluation, both automatic segmentation, including correction of contours when needed, and manual delineation was performed and both processes were timed. Quantitative scoring with dice-similarity coefficient (DSC), 95% Hausdorff Distance (95%HD) and surface DSC (sDSC) was used to compare both the automatic (not-corrected) and corrected contours with the manual contours. Qualitative scoring was performed by five radiotherapy technologists and five radiation oncologists using a 3-point Likert scale. Results: Time reduction was achieved using auto-segmentation in 95% of the cases, including correction. The time reduction (mean ± std) was 42.4% ± 26.5% and 58.5% ± 19.1% for OARs and CTVs, respectively, corresponding to an absolute mean reduction (hh:mm:ss) of 00:08:51 and 00:25:38. Good quantitative results were achieved before correction, e.g. mean DSC for the right-sided CTVp was 0.92 ± 0.06, whereas correction statistically significantly improved this contour by only 0.02 ± 0.05, respectively. In 92% of the cases, auto-contours were scored as clinically acceptable, with or without corrections. Conclusions: A DL segmentation model was trained and was shown to be a time-efficient way to generate clinically acceptable contours for locally advanced breast cancer.

2.
Radiat Oncol ; 17(1): 25, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35123517

RESUMO

BACKGROUND: Artificial intelligence (AI) shows great potential to streamline the treatment planning process. However, its clinical adoption is slow due to the limited number of clinical evaluation studies and because often, the translation of the predicted dose distribution to a deliverable plan is lacking. This study evaluates two different, deliverable AI plans in terms of their clinical acceptability based on quantitative parameters and qualitative evaluation by four radiation oncologists. METHODS: For 20 left-sided node-negative breast cancer patients, treated with a prescribed dose of 40.05 Gy, using tangential beam intensity modulated radiotherapy, two model-based treatment plans were evaluated against the corresponding manual plan. The two models used were an in-house developed U-net model and a vendor-developed contextual atlas regression forest model (cARF). Radiation oncologists evaluated the clinical acceptability of each blinded plan and ranked plans according to preference. Furthermore, a comparison with the manual plan was made based on dose volume histogram parameters, clinical evaluation criteria and preparation time. RESULTS: The U-net model resulted in a higher average and maximum dose to the PTV (median difference 0.37 Gy and 0.47 Gy respectively) and a slightly higher mean heart dose (MHD) (0.01 Gy). The cARF model led to higher average and maximum doses to the PTV (0.30 and 0.39 Gy respectively) and a slightly higher MHD (0.02 Gy) and mean lung dose (MLD, 0.04 Gy). The maximum MHD/MLD difference was ≤ 0.5 Gy for both AI plans. Regardless of these dose differences, 90-95% of the AI plans were considered clinically acceptable versus 90% of the manual plans. Preferences varied between the radiation oncologists. Plan preparation time was comparable between the U-net model and the manual plan (287 s vs 253 s) while the cARF model took longer (471 s). When only considering user interaction, plan generation time was 121 s for the cARF model and 137 s for the U-net model. CONCLUSIONS: Two AI models were used to generate deliverable plans for breast cancer patients, in a time-efficient manner, requiring minimal user interaction. Although the AI plans resulted in slightly higher doses overall, radiation oncologists considered 90-95% of the AI plans clinically acceptable.


Assuntos
Inteligência Artificial , Planejamento da Radioterapia Assistida por Computador , Neoplasias Unilaterais da Mama/radioterapia , Feminino , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...