Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(23): 5792-5799, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28584084

RESUMO

Blood cells are derived from a common set of hematopoietic stem cells, which differentiate into more specific progenitors of the myeloid and lymphoid lineages, ultimately leading to differentiated cells. This developmental process is controlled by a complex regulatory network involving cytokines and their receptors, transcription factors, and chromatin remodelers. Using public data and data from our own molecular genetic experiments (quantitative PCR, Western blot, EMSA) or genome-wide assays (RNA-sequencing, ChIP-sequencing), we have assembled a comprehensive regulatory network encompassing the main transcription factors and signaling components involved in myeloid and lymphoid development. Focusing on B-cell and macrophage development, we defined a qualitative dynamical model recapitulating cytokine-induced differentiation of common progenitors, the effect of various reported gene knockdowns, and the reprogramming of pre-B cells into macrophages induced by the ectopic expression of specific transcription factors. The resulting network model can be used as a template for the integration of new hematopoietic differentiation and transdifferentiation data to foster our understanding of lymphoid/myeloid cell-fate decisions.


Assuntos
Diferenciação Celular/genética , Transdiferenciação Celular/genética , Linfócitos/citologia , Modelos Biológicos , Células Mieloides/citologia , Linfócitos B/citologia , Redes Reguladoras de Genes , Macrófagos/citologia
2.
Mol Cell Biol ; 37(4)2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27920256

RESUMO

Short-term and long-term transcriptional memory is the phenomenon whereby the kinetics or magnitude of gene induction is enhanced following a prior induction period. Short-term memory persists within one cell generation or in postmitotic cells, while long-term memory can survive multiple rounds of cell division. We have developed a tissue culture model to study the epigenetic basis for long-term transcriptional memory (LTTM) and subsequently used this model to better understand the epigenetic mechanisms that enable heritable memory of temporary stimuli. We find that a pulse of transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα) induces LTTM on a subset of target genes that survives nine cell divisions. The chromatin landscape at genes that acquire LTTM is more repressed than at those genes that do not exhibit memory, akin to a latent state. We show through chromatin immunoprecipitation (ChIP) and chemical inhibitor studies that RNA polymerase II (Pol II) elongation is important for establishing memory in this model but that Pol II itself is not retained as part of the memory mechanism. More generally, our work reveals that a transcription factor involved in lineage specification can induce LTTM and that failure to rerepress chromatin is one epigenetic mechanism underlying transcriptional memory.


Assuntos
Cromatina/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Histonas/metabolismo , Lipopolissacarídeos/farmacologia , Lisina/metabolismo , Metilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , RNA Polimerase II/metabolismo , Transcrição Gênica/efeitos dos fármacos
3.
Cell Stem Cell ; 18(5): 597-610, 2016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-26971819

RESUMO

Forced expression of reprogramming factors can convert somatic cells into induced pluripotent stem cells (iPSCs). Here we studied genome topology dynamics during reprogramming of different somatic cell types with highly distinct genome conformations. We find large-scale topologically associated domain (TAD) repositioning and alterations of tissue-restricted genomic neighborhoods and chromatin loops, effectively erasing the somatic-cell-specific genome structures while establishing an embryonic stem-cell-like 3D genome. Yet, early passage iPSCs carry topological hallmarks that enable recognition of their cell of origin. These hallmarks are not remnants of somatic chromosome topologies. Instead, the distinguishing topological features are acquired during reprogramming, as we also find for cell-of-origin-dependent gene expression patterns.


Assuntos
Reprogramação Celular/genética , Genoma , Especificidade de Órgãos/genética , Animais , Cromatina/metabolismo , Cromossomos de Mamíferos/química , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Modelos Biológicos
4.
Stem Cell Reports ; 5(2): 232-47, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26235892

RESUMO

Transcription-factor-induced somatic cell conversions are highly relevant for both basic and clinical research yet their mechanism is not fully understood and it is unclear whether they reflect normal differentiation processes. Here we show that during pre-B-cell-to-macrophage transdifferentiation, C/EBPα binds to two types of myeloid enhancers in B cells: pre-existing enhancers that are bound by PU.1, providing a platform for incoming C/EBPα; and de novo enhancers that are targeted by C/EBPα, acting as a pioneer factor for subsequent binding by PU.1. The order of factor binding dictates the upregulation kinetics of nearby genes. Pre-existing enhancers are broadly active throughout the hematopoietic lineage tree, including B cells. In contrast, de novo enhancers are silent in most cell types except in myeloid cells where they become activated by C/EBP factors. Our data suggest that C/EBPα recapitulates physiological developmental processes by short-circuiting two macrophage enhancer pathways in pre-B cells.


Assuntos
Linfócitos B/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Transdiferenciação Celular , Células Mieloides/metabolismo , Mielopoese , Proteínas Proto-Oncogênicas c-ets/metabolismo , Linfócitos B/citologia , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Linhagem Celular , Humanos , Células Mieloides/citologia , Proteínas Proto-Oncogênicas c-ets/genética
5.
Mol Cell Biol ; 34(6): 1145-57, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24421386

RESUMO

MicroRNAs (miRNAs) exert negative effects on gene expression and influence cell lineage choice during hematopoiesis. C/EBPa-induced pre-B cell-to-macrophage transdifferentiation provides an excellent model to investigate the contribution of miRNAs to hematopoietic cell identity, especially because the two cell types involved fall into separate lymphoid and myeloid branches. In this process, efficient repression of the B cell-specific program is essential to ensure transdifferentation and macrophage function. miRNA profiling revealed that upregulation of miRNAs is highly predominant compared with downregulation and that C/EBPa directly regulates several upregulated miRNAs. We also determined that miRNA 34a (miR-34a) and miR-223 sharply accelerate C/EBPa-mediated transdifferentiation, whereas their depletion delays this process. These two miRNAs affect the transdifferentiation efficiency and activity of macrophages, including their lipopolysaccharide (LPS)-dependent inflammatory response. miR-34a and miR-223 directly target and downregulate the lymphoid transcription factor Lef1, whose ectopic expression delays transdifferentiation to an extent similar to that seen with miR-34a and miR-223 depletion. In addition, ectopic introduction of Lef1 in macrophages causes upregulation of B cell markers, including CD19, Pax5, and Ikzf3. Our report demonstrates the importance of these miRNAs in ensuring the erasure of key B cell transcription factors, such as Lef1, and reinforces the notion of their essential role in fine-tuning the control required for establishing cell identity.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/genética , Transdiferenciação Celular/genética , Fator 1 de Ligação ao Facilitador Linfoide/genética , Macrófagos/metabolismo , MicroRNAs/genética , Animais , Antígenos CD19/genética , Antígenos CD19/metabolismo , Linfócitos B/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Regulação para Baixo/genética , Fator de Transcrição Ikaros/genética , Fator de Transcrição Ikaros/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Camundongos , MicroRNAs/metabolismo , Fator de Transcrição PAX5/genética , Fator de Transcrição PAX5/metabolismo , Células Precursoras de Linfócitos B/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima/genética
6.
Nature ; 506(7487): 235-9, 2014 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-24336202

RESUMO

CCAAT/enhancer binding protein-α (C/EBPα) induces transdifferentiation of B cells into macrophages at high efficiencies and enhances reprogramming into induced pluripotent stem (iPS) cells when co-expressed with the transcription factors Oct4 (Pou5f1), Sox2, Klf4 and Myc (hereafter called OSKM). However, how C/EBPα accomplishes these effects is unclear. Here we find that in mouse primary B cells transient C/EBPα expression followed by OSKM activation induces a 100-fold increase in iPS cell reprogramming efficiency, involving 95% of the population. During this conversion, pluripotency and epithelial-mesenchymal transition genes become markedly upregulated, and 60% of the cells express Oct4 within 2 days. C/EBPα acts as a 'path-breaker' as it transiently makes the chromatin of pluripotency genes more accessible to DNase I. C/EBPα also induces the expression of the dioxygenase Tet2 and promotes its translocation to the nucleus where it binds to regulatory regions of pluripotency genes that become demethylated after OSKM induction. In line with these findings, overexpression of Tet2 enhances OSKM-induced B-cell reprogramming. Because the enzyme is also required for efficient C/EBPα-induced immune cell conversion, our data indicate that Tet2 provides a mechanistic link between iPS cell reprogramming and B-cell transdifferentiation. The rapid iPS reprogramming approach described here should help to fully elucidate the process and has potential clinical applications.


Assuntos
Linfócitos B/citologia , Linfócitos B/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Transdiferenciação Celular , Reprogramação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Animais , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Células Cultivadas , Reprogramação Celular/genética , Cromatina/genética , Cromatina/metabolismo , Citosina/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Desoxirribonuclease I/metabolismo , Dioxigenases , Transição Epitelial-Mesenquimal/genética , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Regulação para Cima/genética
7.
Mol Cell Biol ; 30(24): 5686-97, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20956564

RESUMO

The highly related mammalian Sin3A and Sin3B proteins provide a versatile platform for chromatin-modifying activities. Sin3-containing complexes play a role in gene repression through deacetylation of nucleosomes. Here, we explore a role for Sin3 in myogenesis by examining the phenotypes resulting from acute somatic deletion of both isoforms in vivo and from primary myotubes in vitro. Myotubes ablated for Sin3A alone, but not Sin3B, displayed gross defects in sarcomere structure that were considerably enhanced upon simultaneous ablation of both isoforms. Massively parallel sequencing of Sin3A- and Sin3B-bound genomic loci revealed a subset of target genes directly involved in sarcomere function that are positively regulated by Sin3A and Sin3B proteins. Both proteins were coordinately recruited to a substantial number of genes. Interestingly, depletion of Sin3B led to compensatory increases in Sin3A recruitment at certain target loci, but Sin3B was never found to compensate for Sin3A loss. Thus, our analyses describe a novel transcriptional role for Sin3A and Sin3B proteins associated with maintenance of differentiated muscle cells.


Assuntos
Desenvolvimento Muscular/fisiologia , Músculo Esquelético , Isoformas de Proteínas/metabolismo , Proteínas Repressoras/metabolismo , Sarcômeros/fisiologia , Animais , Linhagem Celular , Deleção de Genes , Camundongos , Músculo Esquelético/citologia , Músculo Esquelético/fisiologia , Fenótipo , Isoformas de Proteínas/genética , Interferência de RNA , Proteínas Repressoras/genética , Sarcômeros/ultraestrutura , Complexo Correpressor Histona Desacetilase e Sin3 , Taxa de Sobrevida
8.
Genes Dev ; 23(1): 37-53, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19136625

RESUMO

Current models posit that E2F transcription factors can be divided into members that either activate or repress transcription, in part through collaboration with the retinoblastoma (pRb) tumor suppressor family. The E2f3 locus encodes E2f3a and E2f3b proteins, and available data suggest that they regulate cell cycle-dependent gene expression through opposing transcriptional activating and repressing activities in growing and quiescent cells, respectively. However, the role, if any, of E2F proteins, and in particular E2f3, in myogenic differentiation is not well understood. Here, we dissect the contributions of E2f3 isoforms and other activating and repressing E2Fs to cell cycle exit and differentiation by performing genome-wide identification of isoform-specific targets. We show that E2f3a and E2f3b target genes are involved in cell growth, lipid metabolism, and differentiation in an isoform-specific manner. Remarkably, using gene silencing, we show that E2f3b, but not E2f3a or other E2F family members, is required for myogenic differentiation, and that this requirement for E2f3b does not depend on pRb. Our functional studies indicate that E2f3b specifically attenuates expression of genes required to promote differentiation. These data suggest how diverse E2F isoforms encoded by a single locus can play opposing roles in cell cycle exit and differentiation.


Assuntos
Diferenciação Celular , Fator de Transcrição E2F3/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Mioblastos/citologia , Mioblastos/metabolismo , Animais , Linhagem Celular , Fatores de Transcrição E2F/metabolismo , Fator de Transcrição E2F3/genética , Camundongos , Ligação Proteica , Isoformas de Proteínas , Proteínas Repressoras/metabolismo
9.
Mol Cell ; 32(3): 359-70, 2008 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-18995834

RESUMO

The multisubunit Sin3 corepressor complex regulates gene transcription through deacetylation of nucleosomes. However, the full range of Sin3 activities and targets is not well understood. Here, we have investigated genome-wide binding of mouse Sin3 and RBP2 as well as histone modifications and nucleosome positioning as a function of myogenic differentiation. Remarkably, we find that Sin3 complexes spread immediately downstream of the transcription start site on repressed and transcribed genes during differentiation. We show that RBP2 is part of a Sin3 complex and that on a subset of E2F4 target genes, the coordinated activity of Sin3 and RBP2 leads to deacetylation, demethylation, and repositioning of nucleosomes. Our work provides evidence for coordinated binding of Sin3, chromatin modifications, and chromatin remodeling within discrete regulatory regions, suggesting a model in which spreading of Sin3 binding is ultimately linked to permanent gene silencing on a subset of E2F4 target genes.


Assuntos
Inativação Gênica , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Mioblastos/fisiologia , Animais , Ciclo Celular , Divisão Celular , Replicação do DNA , Fator de Transcrição E2F4/genética , Fator de Transcrição E2F4/metabolismo , Camundongos , Mioblastos/citologia , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Complexo Correpressor Histona Desacetilase e Sin3 , Transcrição Gênica , Ativação Transcricional
10.
J Cell Biol ; 179(7): 1399-412, 2007 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-18166651

RESUMO

The retinoblastoma tumor suppressor protein (pRb) is involved in mitotic exit, promoting the arrest of myoblasts, and myogenic differentiation. However, it is unclear how permanent cell cycle exit is maintained in differentiated muscle. Using RNA interference, expression profiling, and chromatin immunoprecipitations, we show that pRb is essential for cell cycle exit and the differentiation of myoblasts and is also uniquely required to maintain this arrest in myotubes. Remarkably, we also uncover a function for the pRb-related proteins p107 and p130 as enforcers of a G2/M phase checkpoint that prevents progression into mitosis in cells that have lost pRb. We further demonstrate that pRb effects permanent cell cycle exit in part by maintaining trimethylation of histone H3 lysine 27 (H3K27) on cell cycle genes. H3K27 trimethylation silences other genes, including Cyclin D1, in a pRb-independent but polycomb-dependent manner. Thus, our data distinguish two distinct chromatin-based regulatory mechanisms that lead to terminal differentiation.


Assuntos
Ciclo Celular/genética , Diferenciação Celular/genética , Histonas/metabolismo , Lisina/metabolismo , Mioblastos Esqueléticos/metabolismo , Proteína do Retinoblastoma/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Divisão Celular/genética , Linhagem Celular , Metilação de DNA , Fase G2/genética , Perfilação da Expressão Gênica , Inativação Gênica/fisiologia , Genes cdc/fisiologia , Histonas/genética , Camundongos , Interferência de RNA , Proteína do Retinoblastoma/genética , Proteína p107 Retinoblastoma-Like/genética , Proteína p130 Retinoblastoma-Like/genética
11.
J Biol Chem ; 281(7): 4523-31, 2006 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-16368692

RESUMO

We previously showed that the Spt-Ada-Gcn5-acetyltransferase (SAGA) complex is recruited to the activated HXT2 and HXT4 genes and plays a role in the association of TBP-associated factors. Using the HXT2 and HXT4 genes, we now present evidence for a functional link between Snf1p-dependent activation, recruitment of the SAGA complex, histone H3 removal, and H3 acetylation. Recruitment of the SAGA complex is dependent on the release of Ssn6p-Tup1p repression by Snf1p. In addition, we found that the Gcn5p subunit of the SAGA complex preferentially acetylates histone H3K18 on the HXT2 and HXT4 promoters and that Gcn5p activity is required for removal of histone H3 from the HXT4 promoter TATA region. In contrast, histone H3 removal from the HXT2 promoter does not require Gcn5p. In conclusion, although similar protein complexes are involved, induction of HXT2 and HXT4 displays important mechanistic differences.


Assuntos
Montagem e Desmontagem da Cromatina , Proteínas de Membrana/genética , Proteínas de Transporte de Monossacarídeos/genética , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transativadores/metabolismo , Acetilação , Proteínas de Ligação a DNA/fisiologia , Proteínas Facilitadoras de Transporte de Glucose , Histona Acetiltransferases/fisiologia , Histonas/metabolismo , Proteínas Repressoras/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , TATA Box
12.
Mol Cell Biol ; 25(12): 4863-72, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15923605

RESUMO

Transcription activation in yeast (Saccharomyces cerevisiae) involves ordered recruitment of transcription factor complexes, such as TFIID, SAGA, and Mot1p. Previously, we showed that both Mot1p and Taf1p are recruited to the HXT2 and HXT4 genes, which encode hexose transporter proteins. Here, we show that SAGA also binds to the HXT2 and HXT4 promoters and plays a pivotal role in the recruitment of Mot1p and Taf1p. The deletion of either SPT3 or SPT8 reduces Mot1p binding to HXT2 and HXT4. Surprisingly, the deletion of GCN5 reduces Taf1p binding to both promoters. When GCN5 is deleted in spt3Delta or spt8Delta strains, neither Mot1p nor Taf1p binds, and this results in a diminished recruitment of TATA binding protein and polymerase II to the HXT4 but not the HXT2 promoter. This is reflected by the SAGA-dependent expression of HXT4. In contrast, SAGA-independent induction of HXT2 suggests a functional redundancy with other factors. A functional interplay of different SAGA subunits with Mot1p and Taf1p was supported by phenotypic analysis of MOT1 SAGA or TAF1/SAGA double mutant strains, which revealed novel genetic interactions between MOT1 and SPT8 and between TAF1 and GCN5. In conclusion, our data demonstrate functional links between SAGA, Mot1p, and TFIID in HXT gene regulation.


Assuntos
DNA Helicases/metabolismo , Regulação Fúngica da Expressão Gênica , Subunidades Proteicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/metabolismo , Fatores de Transcrição/metabolismo , Adenosina Trifosfatases , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose , Histona Acetiltransferases , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Subunidades Proteicas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores Associados à Proteína de Ligação a TATA/genética , Fator de Transcrição TFIID/genética , Fatores de Transcrição/genética , Transcrição Gênica , Ativação Transcricional
13.
EMBO J ; 21(19): 5173-83, 2002 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-12356733

RESUMO

Recruitment of TATA-binding protein (TBP) is central to activation of transcription by RNA polymerase II (pol II). This depends upon co-activator proteins including TBP-associated factors (TAFs). Yeast Mot1p was identified as a general transcriptional repressor in genetic screens and is also found associated with TBP. To obtain insight into Mot1p function in vivo, we determined the mRNA expression profile of the mot1-1 temperature-sensitive (Ts) strain. Unexpectedly, this indicated that Mot1p mostly plays a positive role for transcription. For one potential activation target, HXT2, we analyzed promoter recruitment of Mot1p, TBP, Taf1p (Taf130p) and pol II by chromatin immunoprecipitation assays. Whereas TBP becomes stably associated upon activation of the HXT2 and HXT4 promoters, Mot1p showed only a transient association. TBP recruitment was compromised in two different mot1 mutant strains, but was only moderately affected in a taf1 Ts strain. Together, our data indicate that Mot1p can assist in recruitment of TBP on promoters during gene activation in vivo.


Assuntos
DNA Helicases/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Proteína de Ligação a TATA-Box/metabolismo , Ativação Transcricional/genética , Adenosina Trifosfatases , DNA Polimerase II/metabolismo , Proteínas Facilitadoras de Transporte de Glucose , Proteínas de Membrana/genética , Proteínas de Transporte de Monossacarídeos/genética , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...