Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Harmful Algae ; 88: 101536, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31582161

RESUMO

Photoautotrophs are capable of consuming high quantities of CO2, yet scant research exists examining the influence of different CO2 concentrations on the growth of freshwater diazotrophic or non-diazotrophic cyanobacteria. In this study, we cultured two cyanobacteria taxa (Dolichospermum circinale and Microcystis aeruginosa) within controlled atmospheric CO2 chambers at pre-industrial, and post-industrial concentrations. Biovolume and chlorophyll a (Chl-a) differed as a consequence of the adjusted CO2 gradients. Significantly higher biovolume measurements were observed in the elevated CO2 treatment for the diazotrophic species in the initial experiment. However, a follow-up experiment, with a corrected culture replenishment regime showed Chl-a measurements were greater for the diazotrophic and non-diazotrophic species in the elevated CO2 treatment. Increasing CO2 presents a risk to already compromised eutrophic and hyper-eutrophic ecosystems, and we reason increasing CO2 concentrations could affect photosynthetic performance and CO2 assimilation of surface dwelling cyanobacteria. Further experimental work is required to establish ecological thresholds for freshwater ecosystems, as pH levels showed a measurable reduction within the elevated CO2 treatments. As cyanobacteria species may respond quite differently to future CO2 concentrations similar comparative studies should be carried out that focus on CO2 dynamics and pH. The findings of the study indicate diazotrophic cyanobacteria growth in particular may benefit from elevated atmospheric CO2 concentrations.


Assuntos
Cianobactérias , Microcystis , Dióxido de Carbono , Clorofila A , Ecossistema
2.
PeerJ ; 7: e7523, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31523501

RESUMO

Analysis of observational data to pinpoint impact of land cover change on local rainfall is difficult due to multiple environmental factors that cannot be strictly controlled. In this study we use a statistical approach to identify the relationship between removal of tree cover and rainfall with data from best available sources for two large areas in Australia. Gridded rainfall data between 1979 and 2015 was used for the areas, while large scale (exogenous) effects were represented by mean rainfall across a much larger area and climatic indicators, such as Southern Oscillation Index and Indian Ocean Dipole. Both generalised additive modelling and step trend tests were used for the analysis. For a region in south central Queensland, the reported change in tree clearing between 2002-2005 did not result in strong statistically significant precipitation changes. On the other hand, results from a bushfire affected region on the border of New South Wales and Victoria suggest significant changes in the rainfall due to changes in tree cover. This indicates the method works better when an abrupt change in the data can be clearly identified. The results from the step trend test also mainly identified a positive relationship between the tree cover and the rainfall at p < 0.1 at the NSW/Victoria region. High rainfall variability and possible regrowth could have impacted the results in the Queensland region.

3.
Microbiol Spectr ; 5(2)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28361735

RESUMO

The diversity and abundance of zoosporic true fungi have been analyzed recently using fungal sequence libraries and advances in molecular methods, such as high-throughput sequencing. This review focuses on four evolutionary primitive true fungal phyla: the Aphelidea, Chytridiomycota, Neocallimastigomycota, and Rosellida (Cryptomycota), most species of which are not polycentric or mycelial (filamentous), rather they tend to be primarily monocentric (unicellular). Zoosporic fungi appear to be both abundant and diverse in many aquatic habitats around the world, with abundance often exceeding other fungal phyla in these habitats, and numerous novel genetic sequences identified. Zoosporic fungi are able to survive extreme conditions, such as high and extremely low pH; however, more work remains to be done. They appear to have important ecological roles as saprobes in decomposition of particulate organic substrates, pollen, plant litter, and dead animals; as parasites of zooplankton and algae; as parasites of vertebrate animals (such as frogs); and as symbionts in the digestive tracts of mammals. Some chytrids cause economically important diseases of plants and animals. They regulate sizes of phytoplankton populations. Further metagenomics surveys of aquatic ecosystems are expected to enlarge our knowledge of the diversity of true zoosporic fungi. Coupled with studies on their functional ecology, we are moving closer to unraveling the role of zoosporic fungi in carbon cycling and the impact of climate change on zoosporic fungal populations.


Assuntos
Fungos/citologia , Fungos/crescimento & desenvolvimento , Esporos Fúngicos/citologia , Microbiologia da Água , Animais , Ecossistema , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...