Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 1543, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35351901

RESUMO

Finding coral reefs resilient to climate warming is challenging given the large spatial scale of reef ecosystems. Methods are needed to predict the location of corals with heritable tolerance to high temperatures. Here, we combine Great Barrier Reef-scale remote sensing with breeding experiments that estimate larval and juvenile coral survival under exposure to high temperatures. Using reproductive corals collected from the northern and central Great Barrier Reef, we develop forecasting models to locate reefs harbouring corals capable of producing offspring with increased heat tolerance of an additional 3.4° heating weeks (~3 °C). Our findings predict hundreds of reefs (~7.5%) may be home to corals that have high and heritable heat-tolerance in habitats with high daily and annual temperature ranges and historically variable heat stress. The locations identified represent targets for protection and consideration as a source of corals for use in restoration of degraded reefs given their potential to resist climate change impacts and repopulate reefs with tolerant offspring.


Assuntos
Antozoários , Termotolerância , Animais , Antozoários/genética , Mudança Climática , Recifes de Corais , Ecossistema
2.
Sci Adv ; 6(20): eaba2498, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32426508

RESUMO

Coral reefs worldwide are suffering mass mortalities from marine heat waves. With the aim of enhancing coral bleaching tolerance, we evolved 10 clonal strains of a common coral microalgal endosymbiont at elevated temperatures (31°C) for 4 years in the laboratory. All 10 heat-evolved strains had expanded their thermal tolerance in vitro following laboratory evolution. After reintroduction into coral host larvae, 3 of the 10 heat-evolved endosymbionts also increased the holobionts' bleaching tolerance. Although lower levels of secreted reactive oxygen species (ROS) accompanied thermal tolerance of the heat-evolved algae, reduced ROS secretion alone did not predict thermal tolerance in symbiosis. The more tolerant symbiosis exhibited additional higher constitutive expression of algal carbon fixation genes and coral heat tolerance genes. These findings demonstrate that coral stock with enhanced climate resilience can be developed through ex hospite laboratory evolution of their microalgal endosymbionts.


Assuntos
Antozoários , Dinoflagellida , Microalgas , Animais , Antozoários/genética , Antozoários/metabolismo , Branqueamento de Corais , Recifes de Corais , Dinoflagellida/genética , Temperatura Alta , Espécies Reativas de Oxigênio/metabolismo , Simbiose/genética
3.
Biol Open ; 9(1)2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31915210

RESUMO

The rate of coral reef degradation from climate change is accelerating and, as a consequence, a number of interventions to increase coral resilience and accelerate recovery are under consideration. Acropora spathulata coral colonies that survived mass bleaching in 2016 and 2017 were sourced from a bleaching-impacted and warmer northern reef on the Great Barrier Reef (GBR). These individuals were reproductively crossed with colonies collected from a recently bleached but historically cooler central GBR reef to produce pure and crossbred offspring groups (warm-warm, warm-cool and cool-warm). We tested whether corals from the warmer reef produced more thermally tolerant hybrid and purebred offspring compared with crosses produced with colonies sourced from the cooler reef and whether different symbiont taxa affect heat tolerance. Juveniles were infected with Symbiodinium tridacnidorum, Cladocopium goreaui and Durusdinium trenchii and survival, bleaching and growth were assessed at 27.5°C and 31°C. The contribution of host genetic background and symbiont identity varied across fitness traits. Offspring with either both or one parent from the northern population exhibited a 13- to 26-fold increase in survival odds relative to all other treatments where survival probability was significantly influenced by familial cross identity at 31°C but not 27.5°C (Kaplan-Meier P=0.001 versus 0.2). If in symbiosis with D. trenchii, a warm sire and cool dam provided the best odds of juvenile survival. Bleaching was predominantly driven by Symbiodiniaceae treatment, where juveniles hosting D. trenchii bleached significantly less than the other treatments at 31°C. The greatest overall fold-benefits in growth and survival at 31°C occurred in having at least one warm dam and in symbiosis with D. trenchii Juveniles associated with D. trenchii grew the most at 31°C, but at 27.5°C, growth was fastest in juveniles associated with C. goreaui In conclusion, selective breeding with warmer GBR corals in combination with algal symbiont manipulation can assist in increasing thermal tolerance on cooler but warming reefs. Such interventions have the potential to improve coral fitness in warming oceans.This article has an associated First Person interview with the first author of the paper.


Assuntos
Antozoários/crescimento & desenvolvimento , Antozoários/microbiologia , Mudança Climática , Simbiose , Temperatura , Termotolerância , Aclimatação , Animais , Dinoflagellida , Temperatura Alta , Oceanos e Mares , Seleção Artificial
4.
Environ Microbiol ; 21(6): 1969-1979, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30277308

RESUMO

Research into causative agents underlying coral disease have focused primarily on bacteria, whereas potential roles of viruses have been largely unaddressed. Bacteriophages may contribute to diseases through the lysogenic introduction of virulence genes into bacteria, or prevent diseases through lysis of bacterial pathogens. To identify candidate phages that may influence the pathogenicity of black band disease (BBD), communities of bacteria (16S rRNA) and T4-bacteriophages (gp23) were simultaneously profiled with amplicon sequencing among BBD-lesions and healthy-coral-tissue of Montipora hispida, as well as seawater (study site: the central Great Barrier Reef). Bacterial community compositions were distinct among BBD-lesions, healthy coral tissue and seawater samples, as observed in previous studies. Surprisingly, however, viral beta diversities based on both operational taxonomic unit (OTU)-compositions and overall viral community compositions of assigned taxa did not differ statistically between the BBD-lesions and healthy coral tissue. Nonetheless, relative abundances of three bacteriophage OTUs, affiliated to Cyanophage PRSM6 and Prochlorococcus phages P-SSM2, were significantly higher in BBD-lesions than in healthy tissue. These OTUs associated with BBD samples suggest the presence of bacteriophages that infect members of the cyanobacteria-dominated BBD community, and thus have potential roles in BBD pathogenicity.


Assuntos
Antozoários/virologia , Bacteriófago T4/fisiologia , Animais , Bacteriófago T4/genética , Bacteriófago T4/isolamento & purificação , Filogenia , Água do Mar/virologia
5.
Mol Ecol ; 25(12): 2719-23, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27192557

RESUMO

Symbiodinium are a diverse group of unicellular dinoflagellates that are important nutritional symbionts of reef-building corals. Symbiodinium putative species ('types') are commonly identified with genetic markers, mostly nuclear and chloroplast encoded ribosomal DNA regions. Population genetic analyses using microsatellite loci have provided insights into Symbiodinium biogeography, connectivity and phenotypic plasticity, but are complicated by: (i) a lack of consensus criteria used to delineate inter- vs. intragenomic variation within species; and (ii) the high density of Symbiodinium in host tissues, which results in single samples comprising thousands of individuals. To address this problem, Wham & LaJeunesse (2016) present a method for identifying cryptic Symbiodinium species from microsatellite data based on correlations between allele size distributions and nongeographic genetic structure. Multilocus genotypes that potentially do not recombine in sympatry are interpreted as secondary 'species' to be discarded from downstream population genetic analyses. However, Symbiodinium species delineations should ideally incorporate multiple physiological, ecological and molecular criteria. This is because recombination tests may be a poor indicator of species boundaries in Symbiodinium due to their predominantly asexual mode of reproduction. Furthermore, discontinuous microsatellite allele sizes in sympatry may be explained by secondary contact between previously isolated populations and by mutations that occur in a nonstepwise manner. Limitations of using microsatellites alone to delineate species are highlighted in earlier studies that demonstrate occasional bimodal distributions of allele sizes within Symbiodinium species and considerable allele size sharing among Symbiodinium species. We outline these issues and discuss the validity of reinterpretations of our previously published microsatellite data from Symbiodinium populations on the Great Barrier Reef (Howells et al. 2013).


Assuntos
Alelos , Simbiose , Animais , Antozoários/genética , Dinoflagellida/genética , Repetições de Microssatélites
6.
Mol Ecol ; 22(23): 5821-34, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24112610

RESUMO

Understanding connectivity of coral populations among and within reefs over ecologically significant timescales is essential for developing evidence-based management strategies, including the design of marineprotected areas. Here, we present the first assessment of contemporary connectivity among populations of two Molecular Operational Taxonomic Units (MOTUs) of the brooding coral Pocillopora damicornis. We used individual-based genetic assignment methods to identify the proportions of philopatric and migrant larval recruits, settling over 12 months at sites around Lizard Island (northern Great Barrier Reef [GBR]) and over 24 months at sites around the Palms Islands (central GBR). Overall, we found spatially and temporally variable rates of self-recruitment and dispersal, demonstrating the importance of variation in local physical characteristics in driving dispersal processes. Recruitment patterns and inferred dispersal distances differed between the two P. damicornis MOTUs, with type α recruits exhibiting predominantly philopatric recruitment, while the majority of type ß recruits were either migrants from identified putative source populations or assumed migrants based on genetic exclusion from all known populations. While P. damicornis invests much energy into brooding clonal larvae, we found that only 15% and 7% of type α and type ß recruits, respectively, were clones of sampled adult colonies or other recruits, challenging the hypothesis that reproduction is predominantly asexual in this species on the GBR. We explain high rates of self-recruitment and low rates of clonality in these MOTUs by suggesting that locally retained larvae originate predominantly from spawned gametes, while brooded larvae are mainly vagabonds.


Assuntos
Distribuição Animal , Antozoários/genética , Genética Populacional/métodos , Animais , Austrália , Ecossistema , Genótipo , Ilhas , Larva/genética , Repetições de Microssatélites , Densidade Demográfica , Análise Espaço-Temporal
7.
Mol Ecol ; 22(23): 5805-20, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24112642

RESUMO

Understanding levels of connectivity among scleractinian coral populations over a range of temporal and spatial scales is vital for managing tropical coral reef ecosystems. Here, we use multilocus microsatellite genotypes to assess the spatial genetic structure of two molecular operational taxonomic units (MOTUs, types α and ß) of the widespread coral Pocillopora damicornis on the Great Barrier Reef (GBR) and infer the extent of connectivity on spatial scales spanning from local habitat types to latitudinal sectors of the GBR. We found high genetic similarities over large spatial scales spanning > 1000 km from the northern to the southern GBR, but also strong genetic differentiation at local scales in both MOTUs. The presence of a considerable number of first-generation migrants within the populations sampled (12% and 27% for types α and ß, respectively) suggests that genetic differentiation over small spatial scales is probably a consequence of stochastic recruitment from different genetic pools into recently opened up spaces on the reef, for example, following major disturbance events. We explain high genetic similarity among populations over hundreds of kilometres by long competency periods of brooded zooxanthellate larvae and multiple larval release events each year, combined with strong longshore currents typical along the GBR. The lack of genetic evidence for predominantly clonal reproduction in adult populations of P. damicornis, which broods predominantly asexually produced larvae, further undermines the paradigm that brooded larvae settle close to parent colonies shortly after the release.


Assuntos
Antozoários/genética , Genética Populacional , Distribuição Animal , Animais , Austrália , Ecossistema , Genótipo , Repetições de Microssatélites , Tipagem de Sequências Multilocus
8.
Proc Biol Sci ; 279(1729): 699-708, 2012 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-21752820

RESUMO

In sessile modular marine invertebrates, chimeras can originate from fusions of closely settling larvae or of colonies that come into contact through growth or movement. While it has been shown that juveniles of brooding corals fuse under experimental conditions, chimera formation in broadcast spawning corals, the most abundant group of reef corals, has not been examined. This study explores the capacity of the broadcast spawning coral Acropora millepora to form chimeras under experimental conditions and to persist as chimeras in the field. Under experimental conditions, 1.5-fold more larvae settled in aggregations than solitarily, and analyses of nine microsatellite loci revealed that 50 per cent of juveniles tested harboured different genotypes within the same colony. Significantly, some chimeric colonies persisted for 23 months post-settlement, when the study ended. Genotypes within persisting chimeric colonies all showed a high level of relatedness, whereas rejecting colonies displayed variable levels of relatedness. The nearly threefold greater sizes of chimeras compared with solitary juveniles, from settlement through to at least three months, suggest that chimerism is likely to be an important strategy for maximizing survival of vulnerable early life-history stages of corals, although longer-term studies are required to more fully explore the potential benefits of chimerism.


Assuntos
Antozoários/fisiologia , Quimera/genética , Adaptação Fisiológica , Animais , Antozoários/genética , Quimera/fisiologia , Genótipo , Larva/genética , Larva/fisiologia , Repetições de Microssatélites , Reprodução/fisiologia
9.
Mol Ecol Resour ; 11(2): 328-34, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21429140

RESUMO

We report an accurate multiplex reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay, capable of reproducing gene expression profiles from 16 target genes [12 genes of interest (GOIs) and four reference genes (RGs)] in Acropora millepora, a common reef-building model coral species. The 12 GOIs have known or putative roles in the coral bleaching response, yet the method is not restricted to this particular assay and gene set. The procedure is based on the Beckman Coulter (Fullerton, CA, USA) GenomeLab™ GeXP Genetic Analysis System and bridges the gap between quantitative real-time PCR (qPCR) expression analysis of a single or a small number of genes and microarray gene expression surveys of thousands of genes. Despite large variation among biological replicates, the majority of GOIs were up-regulated (up to 4000%) in most colonies during a laboratory-based thermal stress experiment. Two genes, Nf-kß2 and MnSod, were consistently up-regulated in all colonies tested, and we therefore propose these as candidate markers useful for population-level evaluations of thermal stress. Our assay provides an important new tool for coral bleaching studies; because of the lower cost, labour and amount of cDNA required compared with singleplex qPCR, population-level studies with large biological replication are feasible.


Assuntos
Antozoários/genética , Perfilação da Expressão Gênica , Animais , Dados de Sequência Molecular , Proteínas/genética , Temperatura , Transcrição Gênica
10.
Mol Ecol Resour ; 9(1): 74-82, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21564569

RESUMO

Understanding the flexibility of the endosymbioses between scleractinian corals and single-cell algae of the genus Symbiodinium will provide valuable insights into the future of coral reefs. Here, a real-time polymerase chain reaction (PCR) assay is presented to accurately determine the cell densities of Symbiodinium clades C and D in the scleractinian coral Acropora millepora, which can be extended to other coral-symbiont associations in the future. The assay targets single- to low-copy genes of the actin family of both the coral host and algal symbiont. Symbiont densities are expressed as the ratio of Symbiodinium cells to each host cell (S/H ratio, error within 30%), but can also be normalized to coral surface area. Greater accuracy in estimating ratios of associations involving multiple clades is achieved compared with previous real-time PCR assays based on high-copy ribosomal DNA loci (error within an order of magnitude). Healthy adult A. millepora containing ~1.4 × 10(6) zooxanthellae per cm(2) (as determined by haemocytometer counts) had S/H ratios of c. 0.15, i.e. ~15 symbiont cells per 100 host cells. In severely bleached colonies, this ratio decreased to less than 0.005. Because of its capacity to accurately determine both densities and ratios of multiple symbionts within one sample, the assay will open the door for novel research into the mechanisms of symbiont shuffling and switching.

11.
Mol Ecol Resour ; 9(2): 670-2, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21564724

RESUMO

Microsatellites are high-resolution genetic markers that may be applied to examine parentage, population structure and the direction and extent of dispersal. Here we present eight polymorphic microsatellite loci developed for the carybdeid jellyfish, Carukia barnesi. The loci were developed from a microsatellite-enriched, partial genomic DNA library and tested for polymorphism on animals from each of two geographically distinct populations, Lizard Island and Double Island, from the Great Barrier Reef. The number of alleles observed for each locus ranged from 7 to 19.

12.
Proc Biol Sci ; 275(1641): 1359-65, 2008 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-18348962

RESUMO

The symbiosis between reef-building corals and their algal endosymbionts (zooxanthellae of the genus Symbiodinium) is highly sensitive to temperature stress, which makes coral reefs vulnerable to climate change. Thermal tolerance in corals is known to be substantially linked to the type of zooxanthellae they harbour and, when multiple types are present, the relative abundance of types can be experimentally manipulated to increase the thermal limits of individual corals. Although the potential exists for this to translate into substantial thermal acclimatization of coral communities, to date there is no evidence to show that this takes place under natural conditions. In this study, we show field evidence of a dramatic change in the symbiont community of Acropora millepora, a common and widespread Indo-Pacific hard coral species, after a natural bleaching event in early 2006 in the Keppel Islands (Great Barrier Reef). Before bleaching, 93.5% (n=460) of the randomly sampled and tagged colonies predominantly harboured the thermally sensitive Symbiodinium type C2, while the remainder harboured a tolerant Symbiodinium type belonging to clade D or mixtures of C2 and D. After bleaching, 71% of the surviving tagged colonies that were initially C2 predominant changed to D or C1 predominance. Colonies that were originally C2 predominant suffered high mortality (37%) compared with D-predominant colonies (8%). We estimate that just over 18% of the original A. millepora population survived unchanged leaving 29% of the population C2 and 71% D or C1 predominant six months after the bleaching event. This change in the symbiont community structure, while it persists, is likely to have substantially increased the thermal tolerance of this coral population. Understanding the processes that underpin the temporal changes in symbiont communities is key to assessing the acclimatization potential of reef corals.


Assuntos
Aclimatação/fisiologia , Antozoários/fisiologia , Ecossistema , Eucariotos/fisiologia , Animais , Antozoários/genética , DNA/química , DNA/genética , DNA Intergênico/química , DNA Intergênico/genética , Variação Genética , Efeito Estufa , Polimorfismo Conformacional de Fita Simples , Análise de Regressão , Simbiose , Temperatura
13.
Mol Ecol ; 16(4): 771-84, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17284210

RESUMO

Understanding the pattern of connectivity among populations is crucial for the development of realistic and spatially explicit population models in marine systems. Here we analysed variation at eight microsatellite loci to assess the genetic structure and to infer patterns of larval dispersal for a brooding coral, Seriatopora hystrix, at an isolated system of reefs in northern Western Australia. Spatial autocorrelation analyses show that populations are locally subdivided, and that the majority of larvae recruit to within 100 m of their natal colony. Further, a combination of F- and R- statistics showed significant differentiation at larger spatial scales (2-60 km) between sites, and this pattern was clearly not associated with distance. However, Bayesian analysis demonstrated that recruitment has been supplemented by less frequent but recent input of larvae from outside the local area; 2-6% of colonies were excluded from the site at which they were sampled. Individual assignments of these migrants to the most likely populations suggest that the majority of migrants were produced at the only site that was not decimated by a recent and catastrophic coral bleaching event. Furthermore, the only site that recovered to prebleaching levels received most of these immigrants. We conclude that the genetic structure of this brooding coral reflects its highly opportunistic life history, in which prolific, philopatric recruitment is occasionally supplemented by exogenously produced larvae.


Assuntos
Antozoários/genética , Demografia , Desastres , Variação Genética , Genética Populacional , Animais , Teorema de Bayes , Frequência do Gene , Geografia , Oceano Índico , Repetições de Microssatélites/genética , Modelos Genéticos , Dinâmica Populacional , Austrália Ocidental
14.
Mol Ecol ; 14(8): 2403-17, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15969723

RESUMO

The presence, genetic identity and diversity of algal endosymbionts (Symbiodinium) in 114 species from 69 genera (20 families) of octocorals from the Great Barrier Reef (GBR), the far eastern Pacific (EP) and the Caribbean was examined, and patterns of the octocoral-algal symbiosis were compared with patterns in the host phylogeny. Genetic analyses of the zooxanthellae were based on ribosomal DNA internal transcribed spacer 1 (ITS1) region. In the GBR samples, Symbiodinium clades A and G were encountered with A and G being rare. Clade B zooxanthellae have been previously reported from a GBR octocoral, but are also rare in octocorals from this region. Symbiodinium G has so far only been found in Foraminifera, but is rare in these organisms. In the Caribbean samples, only Symbiodinium clades B and C are present. Hence, Symbiodinium diversity at the level of phylogenetic clades is lower in octocorals from the Caribbean compared to those from the GBR. However, an unprecedented level of ITS1 diversity was observed within individual colonies of some Caribbean gorgonians, implying either that these simultaneously harbour multiple strains of clade B zooxanthellae, or that ITS1 heterogeneity exists within the genomes of some zooxanthellae. Intracladal diversity based on ITS should therefore be interpreted with caution, especially in cases where no independent evidence exists to support distinctiveness, such as ecological distribution or physiological characteristics. All samples from EP are azooxanthellate. Three unrelated GBR taxa that are described in the literature as azooxanthellate (Junceella fragilis, Euplexaura nuttingi and Stereonephthya sp. 1) contain clade G zooxanthellae, and their symbiotic association with zooxanthellae was confirmed by histology. These corals are pale in colour, whereas related azooxanthellate species are brightly coloured. The evolutionary loss or gain of zooxanthellae may have altered the light sensitivity of the host tissues, requiring the animals to adopt or reduce pigmentation. Finally, we superimposed patterns of the octocoral-algal symbiosis onto a molecular phylogeny of the host. The data show that many losses/gains of endosymbiosis have occurred during the evolution of octocorals. The ancestral state (azooxanthellate or zooxanthellate) in octocorals remains unclear, but the data suggest that on an evolutionary timescale octocorals can switch more easily between mixotrophy and heterotrophy compared to scleractinian corals, which coincides with a low reliance on photosynthetic carbon gain in the former group of organisms.


Assuntos
Antozoários/parasitologia , Dinoflagellida/genética , Variação Genética , Filogenia , Simbiose , Animais , Antozoários/genética , Antozoários/fisiologia , Oceano Atlântico , Sequência de Bases , Teorema de Bayes , Primers do DNA , DNA Espaçador Ribossômico/genética , Geografia , Modelos Genéticos , Dados de Sequência Molecular , Oceano Pacífico , Pigmentação/fisiologia , Alinhamento de Sequência , Análise de Sequência de DNA
15.
Mol Ecol ; 13(8): 2445-58, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15245416

RESUMO

The potential of corals to associate with more temperature-tolerant strains of algae (zooxanthellae, Symbiodinium) can have important implications for the future of coral reefs in an era of global climate change. In this study, the genetic identity and diversity of zooxanthellae was investigated at three reefs with contrasting histories of bleaching mortality, water temperature and shading, in the Republic of Palau (Micronesia). Single-stranded conformation polymorphism and sequence analysis of the ribosomal DNA internal transcribed spacer (ITS)1 region was used for genotyping. A chronically warm but partly shaded coral reef in a marine lake that is hydrographically well connected to the surrounding waters harboured only two single-stranded conformation polymorphism profiles (i.e. zooxanthella communities). It consisted only of Symbiodinium D in all 13 nonporitid species and two Porites species investigated, with the remaining five Porites harbouring C*. Despite the high temperature in this lake (> 0.5 degrees above ambient), this reef did not suffer coral mortality during the (1998) bleaching event, however, no bleaching-sensitive coral families and genera occur in the coral community. This setting contrasts strongly with two other reefs with generally lower temperatures, in which 10 and 12 zooxanthella communities with moderate to low proportions of clade D zooxanthellae were found. The data indicate that whole coral assemblages, when growing in elevated seawater temperatures and at reduced irradiance, can be composed of colonies associated with the more thermo-tolerant clade D zooxanthellae. Future increases in seawater temperature might, therefore, result in an increasing prevalence of Symbiodinium phylotype D in scleractinian corals, possibly associated with a loss of diversity in both zooxanthellae and corals.


Assuntos
Aclimatação/fisiologia , Antozoários/microbiologia , Dinoflagellida/genética , Filogenia , Simbiose , Temperatura , Animais , Sequência de Bases , Teorema de Bayes , DNA Ribossômico/genética , Dinoflagellida/fisiologia , Geografia , Dados de Sequência Molecular , Oceano Pacífico , Palau , Polimorfismo Conformacional de Fita Simples , Análise de Sequência de DNA , Gravação em Vídeo
16.
Mol Ecol ; 13(1): 9-20, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14653784

RESUMO

Symbiotic relationships have contributed greatly to the evolution and maintenance of biological diversity. On the Great Barrier Reef, species of obligate coral-dwelling fishes (genus Gobiodon) coexist by selectively recruiting to colonies of Acropora nasuta that differ in branch-tip colour. In this study, we investigate genetic variability among sympatric populations of two colour morphs of A. nasuta ('blue-tip' and 'brown-tip') living in symbiosis with two fish species, Gobiodon histrio and G. quinquestrigatus, respectively, to determine whether gobies are selecting between intraspecific colour polymorphisms or cryptic coral species. We also examine genetic differentiation among coral populations containing both these colour morphs that are separated by metres between local sites, tens of kilometres across the continental shelf and hundreds of kilometres along the Great Barrier Reef. We use three nuclear DNA loci, two of which we present here for the first time for Acropora. No significant genetic differentiation was detected between sympatric colour morphs at these three loci. Hence, symbiotic gobies are selecting among colour morphs of A. nasuta, rather than cryptic species. Significant genetic geographical structuring was observed among populations, independent of colour, at regional (i.e. latitudinal separation by < 500 km) and cross-shelf (< 50 km) scales, alongside relative homogeneity between local populations on within reef scales (< 5 km). This contrasts with the reported absence of large-scale genetic structuring in A. valida, which is a member of the same species group as A. nasuta. Apparent differences in biogeographical structuring between species within the A. nasuta group emphasize the need for comparative sampling across both spatial (i.e. within reefs, between reefs and between regions) and taxonomic scales (i.e. within and between closely related species).


Assuntos
Antozoários/genética , Variação Genética , Genética Populacional , Perciformes/fisiologia , Pigmentação/fisiologia , Simbiose , Animais , Análise por Conglomerados , Primers do DNA , Eletroforese em Gel de Poliacrilamida , Frequência do Gene , Geografia , Repetições de Microssatélites/genética , Oceano Pacífico , Pigmentação/genética , Polimorfismo Conformacional de Fita Simples , Análise de Sequência de DNA , Especificidade da Espécie
17.
J Evol Biol ; 16(1): 37-46, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14635878

RESUMO

To test the hypothesis of parallel speciation by sexual selection, we examined length variation at six microsatellite loci of samples from four sites of four to six putative species belonging to two subgenera of rocky shore mbuna cichlids from Lake Malawi. Almost all fixation indices were significantly different from zero, suggesting that there is presently little or no gene flow among allopatric populations or sympatric species. Analysis of variance indicated that genetic distances among allopatric populations of putative conspecifics were significantly lower than among sympatric populations of heterospecifics. The topology of trees based on distance matrices was also largely consistent with the hypothesis that the putative species are monophyletic and have thus not evolved in parallel in their present locations. If parallel speciation does occur in Malawi cichlids, it may be on a larger spatial scale than investigated in our study.


Assuntos
Ciclídeos/genética , Evolução Molecular , Variação Genética , Seleção Genética , Comportamento Sexual Animal/fisiologia , Alelos , Animais , Análise por Conglomerados , Água Doce , Geografia , Funções Verossimilhança , Malaui , Repetições de Microssatélites/genética , Dinâmica Populacional , Pigmentação da Pele , Especificidade da Espécie
18.
Mol Ecol ; 12(12): 3477-84, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14629362

RESUMO

Intra- and intercolony diversity and distribution of zooxanthellae in acroporid corals is largely uncharted. In this study, two molecular methods were applied to determine the distribution of zooxanthellae in the branching corals Acropora tenuis and A. valida at several reef locations in the central section of the Great Barrier Reef. Sun-exposed and shaded parts of all colonies were examined. Single-stranded conformational polymorphism analysis showed that individual colonies of A. tenuis at two locations harbour two strains of Symbiodinium belonging to clade C (C1 and C2), whereas conspecific colonies at two other reefs harboured a single zooxanthella strain. A. valida was found to simultaneously harbour strains belonging to two distinct phylogenetic clades (C and D) at all locations sampled. A novel method with improved sensitivity (quantitative polymerase chain reaction using Taqman fluorogenic probes) was used to map the relative abundance distribution of the two zooxanthella clades. At two of the five sampling locations both coral species were collected. At these two locations, composition of the zooxanthella communities showed the same pattern in both coral species, i.e. correlation with ambient light in Pioneer Bay and an absence thereof in Nelly Bay. The results show that the distribution of genetically distinct zooxanthellae is correlated with light regime and possibly temperature in some (but not all) colonies of A. tenuis and A. valida and at some reef locations, which we interpret as acclimation to local environmental conditions.


Assuntos
Biodiversidade , Dinoflagellida/genética , Meio Ambiente , Geografia , Simbiose , Animais , Antozoários/fisiologia , Primers do DNA , Fluorescência , Luz , Oceano Pacífico , Reação em Cadeia da Polimerase , Polimorfismo Conformacional de Fita Simples , Especificidade da Espécie , Temperatura
19.
Mol Ecol ; 11(12): 2475-87, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12453233

RESUMO

Mitochondrial genes have been used extensively in population genetic and phylogeographical analyses, in part due to a high rate of nucleotide substitution in animal mitochondrial DNA (mtDNA). Nucleotide sequences of anthozoan mitochondrial genes, however, are virtually invariant among conspecifics, even at third codon positions of protein-coding sequences. Hence, mtDNA markers are of limited use for population-level studies in these organisms. Mitochondrial gene sequence divergence among anthozoan species is also low relative to that exhibited in other animals, although higher level relationships can be resolved with these markers. Substitution rates in anthozoan nuclear genes are much higher than in mitochondrial genes, whereas nuclear genes in other metazoans usually evolve more slowly than, or similar to, mitochondrial genes. Although several mechanisms accounting for a slow rate of sequence evolution have been proposed, there is not yet a definitive explanation for this observation. Slow evolution and unique characteristics may be common in primitive metazoans, suggesting that patterns of mtDNA evolution in these organisms differ from that in other animal systems.


Assuntos
Antozoários/genética , DNA Mitocondrial/genética , Evolução Molecular , Animais , Grupo dos Citocromos b/química , Grupo dos Citocromos b/genética , DNA de Protozoário/química , DNA de Protozoário/genética , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/genética , Marcadores Genéticos , Variação Genética , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética
20.
Mol Ecol ; 11(8): 1339-49, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12144656

RESUMO

A major challenge for understanding the evolutionary genetics of mass-spawning corals is to explain the maintenance of discrete morphospecies in view of high rates of interspecific fertilization in vitro and nonmonophyletic patterns in molecular phylogenies. In this study, we focused on Acropora cytherea and A. hyacinthus, which have one of the highest potentials for interspecific fertilization. Using sequences of a nuclear intron, we performed phylogenetic and nested clade analyses (NCA). Both species were polyphyletic in molecular phylogenies, but the NCA indicated that they constitute statistically distinguishable lineages. Phylogenetic analysis using an intergenic region of the mitochondrial DNA (mtDNA), was inconclusive because of low levels of variability in this marker. The position of these two species differed between the nuclear DNA (nDNA) and mtDNA phylogenies and was also at odds with a cladistic analysis based on morphology. We conclude that despite the potential for high levels of hybridization and introgression, A. cytherea and A. hyacinthus constitute statistically distinguishable lineages and their taxonomic status is consistent with the cohesion species concept.


Assuntos
Antozoários/genética , Variação Genética , Animais , Antozoários/classificação , Antozoários/fisiologia , DNA/análise , DNA/genética , DNA Mitocondrial/análise , Haplótipos , Íntrons/genética , Dados de Sequência Molecular , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...