Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Cybern ; 48(4): 1242-1252, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28391217

RESUMO

This paper investigates how humans use a previewed target trajectory for control in tracking tasks with various controlled element dynamics. The human's hypothesized "near" and "far" control mechanisms are first analyzed offline in simulations with a quasi-linear model. Second, human control behavior is quantified by fitting the same model to measurements from a human-in-the-loop experiment, where subjects tracked identical target trajectories with a pursuit and a preview display, each with gain, single-, and double-integrator controlled element dynamics. Results show that target-tracking performance improves with preview, primarily due to the far-viewpoint response, which allows humans to cancel their own and the controlled element's lags, without additional control activity. The near-viewpoint response yields better target tracking at higher frequencies, but requires substantially more control activity. The control-theoretic approach adopted in this paper provides unique quantitative insights into human use of preview, which can help to explain human behavior observed in other preview control tasks, like driving.


Assuntos
Sistemas Homem-Máquina , Análise e Desempenho de Tarefas , Simulação por Computador , Humanos , Modelos Teóricos
2.
IEEE Trans Cybern ; 48(1): 2-15, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27662694

RESUMO

Realistic manual control tasks typically involve predictable target signals and random disturbances. The human controller (HC) is hypothesized to use a feedforward control strategy for target-following, in addition to feedback control for disturbance-rejection. Little is known about human feedforward control, partly because common system identification methods have difficulty in identifying whether, and (if so) how, the HC applies a feedforward strategy. In this paper, an identification procedure is presented that aims at an objective model selection for identifying the human feedforward response, using linear time-invariant autoregressive with exogenous input models. A new model selection criterion is proposed to decide on the model order (number of parameters) and the presence of feedforward in addition to feedback. For a range of typical control tasks, it is shown by means of Monte Carlo computer simulations that the classical Bayesian information criterion (BIC) leads to selecting models that contain a feedforward path from data generated by a pure feedback model: "false-positive" feedforward detection. To eliminate these false-positives, the modified BIC includes an additional penalty on model complexity. The appropriate weighting is found through computer simulations with a hypothesized HC model prior to performing a tracking experiment. Experimental human-in-the-loop data will be considered in future work. With appropriate weighting, the method correctly identifies the HC dynamics in a wide range of control tasks, without false-positive results.

3.
IEEE Trans Cybern ; 46(11): 2609-2621, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26540722

RESUMO

Real-life tracking tasks often show preview information to the human controller about the future track to follow. The effect of preview on manual control behavior is still relatively unknown. This paper proposes a generic operator model for preview tracking, empirically derived from experimental measurements. Conditions included pursuit tracking, i.e., without preview information, and tracking with 1 s of preview. Controlled element dynamics varied between gain, single integrator, and double integrator. The model is derived in the frequency domain, after application of a black-box system identification method based on Fourier coefficients. Parameter estimates are obtained to assess the validity of the model in both the time domain and frequency domain. Measured behavior in all evaluated conditions can be captured with the commonly used quasi-linear operator model for compensatory tracking, extended with two viewpoints of the previewed target. The derived model provides new insights into how human operators use preview information in tracking tasks.


Assuntos
Cibernética/métodos , Sistemas Homem-Máquina , Modelos Teóricos , Humanos
4.
IEEE Trans Cybern ; 45(2): 253-65, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25486659

RESUMO

In real-life manual control tasks, human controllers are often required to follow a visible and predictable reference signal, enabling them to use feedforward control actions in conjunction with feedback actions that compensate for errors. Little is known about human control behavior in these situations. This paper investigates how humans adapt their feedforward control dynamics to the controlled element dynamics in a combined ramp-tracking and disturbance-rejection task. A human-in-the-loop experiment is performed with a pursuit display and vehicle-like controlled elements, ranging from a single integrator through second-order systems with a break frequency at either 3, 2, or 1 rad/s, to a double integrator. Because the potential benefits of feedforward control increase with steeper ramp segments in the target signal, three steepness levels are tested to investigate their possible effect on feedforward control with the various controlled elements. Analyses with four novel models of the operator, fitted to time-domain data, reveal feedforward control for all tested controlled elements and both (nonzero) tested levels of ramp steepness. For the range of controlled element dynamics investigated, it is found that humans adapt to these dynamics in their feedforward response, with a close to perfect inversion of the controlled element dynamics. No significant effects of ramp steepness on the feedforward model parameters are found.


Assuntos
Retroalimentação , Sistemas Homem-Máquina , Modelos Biológicos , Análise e Desempenho de Tarefas , Adulto , Cibernética , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...