Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Neonatal Screen ; 9(3)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37489487

RESUMO

Residual heel prick Dried Blood Spots (DBS) are valuable samples for retrospective investigation of inborn metabolic diseases (IMD) and biomarker analyses. Because many metabolites suffer time-dependent decay, we investigated the five-year stability of amino acids (AA) in residual heel prick DBS. In 2019/2020, we analyzed 23 AAs in 2170 residual heel prick DBS from the Dutch neonatal screening program, stored from 2013-2017 (one year at +4 °C and four years at room temperature), using liquid chromatography mass-spectrometry. Stability was assessed by AA changes over the five years. Hydroxyproline could not be measured accurately and was not further assessed. Concentrations of 19 out of the remaining 22 AAs degraded significantly, ranked from most to least stable: aspartate, isoleucine, proline, valine, leucine, tyrosine, alanine, phenylalanine, threonine, citrulline, glutamate, serine, ornithine, glycine, asparagine, lysine, taurine, tryptophan and glutamine. Arginine, histidine and methionine concentrations were below the limit of detection and were likely to have been degraded within the first year of storage. AAs in residual heel prick DBS stored at room temperature are subject to substantial degradation, which may cause incorrect interpretation of test results for retrospective biomarker studies and IMD diagnostics. Therefore, retrospective analysis of heel prick blood should be done in comparison to similarly stored heel prick blood from controls.

2.
J Inherit Metab Dis ; 44(4): 926-938, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33543789

RESUMO

D,L-3-hydroxybutyrate (D,L-3-HB, a ketone body) treatment has been described in several inborn errors of metabolism, including multiple acyl-CoA dehydrogenase deficiency (MADD; glutaric aciduria type II). We aimed to improve the understanding of enantiomer-specific pharmacokinetics of D,L-3-HB. Using UPLC-MS/MS, we analyzed D-3-HB and L-3-HB concentrations in blood samples from three MADD patients, and blood and tissue samples from healthy rats, upon D,L-3-HB salt administration (patients: 736-1123 mg/kg/day; rats: 1579-6317 mg/kg/day of salt-free D,L-3-HB). D,L-3-HB administration caused substantially higher L-3-HB concentrations than D-3-HB. In MADD patients, both enantiomers peaked at 30 to 60 minutes, and approached baseline after 3 hours. In rats, D,L-3-HB administration significantly increased Cmax and AUC of D-3-HB in a dose-dependent manner (controls vs ascending dose groups for Cmax : 0.10 vs 0.30-0.35-0.50 mmol/L, and AUC: 14 vs 58-71-106 minutes*mmol/L), whereas for L-3-HB the increases were significant compared to controls, but not dose proportional (Cmax : 0.01 vs 1.88-1.92-1.98 mmol/L, and AUC: 1 vs 380-454-479 minutes*mmol/L). L-3-HB concentrations increased extensively in brain, heart, liver, and muscle, whereas the most profound rise in D-3-HB was observed in heart and liver. Our study provides important knowledge on the absorption and distribution upon oral D,L-3-HB. The enantiomer-specific pharmacokinetics implies differential metabolic fates of D-3-HB and L-3-HB.


Assuntos
Ácido 3-Hidroxibutírico/administração & dosagem , Ácido 3-Hidroxibutírico/farmacocinética , Deficiência Múltipla de Acil Coenzima A Desidrogenase/tratamento farmacológico , Acil-CoA Desidrogenase/genética , Administração Oral , Animais , Cromatografia Líquida , Humanos , Masculino , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Ratos , Ratos Wistar , Espectrometria de Massas em Tandem
3.
Int J Neonatal Screen ; 6(4)2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33147805

RESUMO

Stored dried blood spots (DBS) can provide valuable samples for the retrospective diagnosis of inborn errors of metabolism, and for validation studies for newborn blood spot screening programs. Acylcarnitine species are subject to degradation upon long-term storage at room temperature, but limited data are available on the stability in original samples and the impact on acylcarnitine ratios. We analysed complete acylcarnitine profiles by flow-injection tandem mass spectrometry in 598 anonymous DBS stored from 2013 to 2017, at +4 °C during the first year and thereafter at room temperature. The concentrations of C2-, C3-, C4-, C5-, C6-, C8-, C10:1-, C10-, C12:1-, C12-, C14:1-, C14-, C16:1-, C16-, C18:2-, C18:1-, C18-, C5OH+C4DC-, C18:1OH-, and C16DC-carnitine decreased significantly, whereas a positive trend was found for free carnitine. Only the C4/C8-, C8/C10-, C14:1/C10- and C14:1/C16-carnitine ratios appeared robust for the metabolite instability. The metabolite instability may provoke the wrong interpretation of test results in the case of retrospective studies and risk the inaccurate estimation of cut-off targets in validation studies when only stored control DBS are used. We recommend including control DBS in diagnostic, retrospective cohort studies, and, for validation studies, we recommend using fresh samples and repeatedly re-evaluating cut-off targets.

4.
Genet Med ; 22(5): 908-916, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31904027

RESUMO

PURPOSE: Multiple acyl-CoA dehydrogenase deficiency (MADD) is a life-threatening, ultrarare inborn error of metabolism. Case reports described successful D,L-3-hydroxybutyrate (D,L-3-HB) treatment in severely affected MADD patients, but systematic data on efficacy and safety is lacking. METHODS: A systematic literature review and an international, retrospective cohort study on clinical presentation, D,L-3-HB treatment method, and outcome in MADD(-like) patients. RESULTS: Our study summarizes 23 MADD(-like) patients, including 14 new cases. Median age at clinical onset was two months (interquartile range [IQR]: 8 months). Median age at starting D,L-3-HB was seven months (IQR: 4.5 years). D,L-3-HB doses ranged between 100 and 2600 mg/kg/day. Clinical improvement was reported in 16 patients (70%) for cardiomyopathy, leukodystrophy, liver symptoms, muscle symptoms, and/or respiratory failure. D,L-3-HB appeared not effective for neuropathy. Survival appeared longer upon D,L-3-HB compared with historical controls. Median time until first clinical improvement was one month, and ranged up to six months. Reported side effects included abdominal pain, constipation, dehydration, diarrhea, and vomiting/nausea. Median D,L-3-HB treatment duration was two years (IQR: 6 years). D,L-3-HB treatment was discontinued in 12 patients (52%). CONCLUSION: The strength of the current study is the international pooling of data demonstrating that D,L-3-HB treatment can be effective and safe in MADD(-like) patients.


Assuntos
Cardiomiopatias , Deficiência Múltipla de Acil Coenzima A Desidrogenase , Ácido 3-Hidroxibutírico , Acil-CoA Desidrogenase/genética , Humanos , Lactente , Deficiência Múltipla de Acil Coenzima A Desidrogenase/tratamento farmacológico , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Estudos Retrospectivos
5.
J Inherit Metab Dis ; 42(5): 878-889, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31268564

RESUMO

Multiple acyl-CoA dehydrogenase deficiency (MADD) is an ultra-rare inborn error of mitochondrial fatty acid oxidation (FAO) and amino acid metabolism. Individual phenotypes and treatment response can vary markedly. We aimed to identify markers that predict MADD phenotypes. We performed a retrospective nationwide cohort study; then developed an MADD-disease severity scoring system (MADD-DS3) based on signs and symptoms with weighed expert opinions; and finally correlated phenotypes and MADD-DS3 scores to FAO flux (oleate and myristate oxidation rates) and acylcarnitine profiles after palmitate loading in fibroblasts. Eighteen patients, diagnosed between 1989 and 2014, were identified. The MADD-DS3 entails enumeration of eight domain scores, which are calculated by averaging the relevant symptom scores. Lifetime MADD-DS3 scores of patients in our cohort ranged from 0 to 29. FAO flux and [U-13 C]C2-, C5-, and [U-13 C]C16-acylcarnitines were identified as key variables that discriminated neonatal from later onset patients (all P < .05) and strongly correlated to MADD-DS3 scores (oleate: r = -.86; myristate: r = -.91; [U-13 C]C2-acylcarnitine: r = -.96; C5-acylcarnitine: r = .97; [U-13 C]C16-acylcarnitine: r = .98, all P < .01). Functional studies in fibroblasts were found to differentiate between neonatal and later onset MADD-patients and were correlated to MADD-DS3 scores. Our data may improve early prediction of disease severity in order to start (preventive) and follow-up treatment appropriately. This is especially relevant in view of the inclusion of MADD in population newborn screening programs.


Assuntos
Carnitina/análogos & derivados , Ácidos Graxos/sangue , Deficiência Múltipla de Acil Coenzima A Desidrogenase/fisiopatologia , Índice de Gravidade de Doença , Carnitina/sangue , Feminino , Humanos , Recém-Nascido , Masculino , Deficiência Múltipla de Acil Coenzima A Desidrogenase/sangue , Estudos Retrospectivos
6.
Mol Genet Metab ; 127(4): 327-335, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31279622

RESUMO

BACKGROUND: Childhood fasting intolerance is a life-threatening problem associated with various inborn errors of metabolism. Plasma acylcarnitines reflect fatty acid oxidation and help determine fasting intolerance etiology. Pediatric reference values of plasma acylcarnitines upon fasting are not available, complicating interpretation of stress samples. METHODS: Retrospective analysis of supervised clinical fasting studies between 01/2005-09/2012. Exclusion criteria involved patients with (suspected) disorders, repeated tests or incomplete results. Remaining children were grouped according to age: group A (≤24 months), B (25-84 months) and C (≥85 months). Median and 2.5th to 97.5th percentiles of basic metabolic parameters and acylcarnitines were determined at start and end of testing on the ward and analyzed for significant differences (p<0.05). RESULTS: Out of 127 fasting studies, 48 were included: group A (n=13), B (n=23) and C (n=12). Hypoglycemia occurred in 21%. Children from group C demonstrated significantly higher end glucose concentrations while end ketone body concentrations were significantly lower compared to younger children. In all groups, free carnitine and C3-carnitine significantly decreased upon fasting, while C2-, C6-, C12:1-, C12-, C14:1-, C14-, C16:1- and C16-carnitine significantly increased. End concentrations of C6-, C12:1-, C12-, C14:1-, C14-, C16:1-, C16- and C18:1-carnitine were significantly lower in children ≥85 months compared to younger children. CONCLUSIONS: Fasting-induced counter-regulatory mechanisms to maintain energy homeostasis are age-dependent. This influences the changes in basic metabolic parameters and acylcarnitine profiles. Our data enable improved interpretation of the individual fasting response and may support assessment of minimal safe fasting times or treatment responses in patients.


Assuntos
Carnitina/análogos & derivados , Jejum/sangue , Hipoglicemia/sangue , Estresse Fisiológico , Glicemia/análise , Carnitina/sangue , Criança , Pré-Escolar , Feminino , Homeostase , Humanos , Lactente , Erros Inatos do Metabolismo Lipídico/sangue , Masculino , Estudos Retrospectivos
7.
BMC Biol ; 14(1): 107, 2016 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-27927213

RESUMO

BACKGROUND: Defects in genes involved in mitochondrial fatty-acid oxidation (mFAO) reduce the ability of patients to cope with metabolic challenges. mFAO enzymes accept multiple substrates of different chain length, leading to molecular competition among the substrates. Here, we combined computational modeling with quantitative mouse and patient data to investigate whether substrate competition affects pathway robustness in mFAO disorders. RESULTS: First, we used comprehensive biochemical analyses of wild-type mice and mice deficient for medium-chain acyl-CoA dehydrogenase (MCAD) to parameterize a detailed computational model of mFAO. Model simulations predicted that MCAD deficiency would have no effect on the pathway flux at low concentrations of the mFAO substrate palmitoyl-CoA. However, high concentrations of palmitoyl-CoA would induce a decline in flux and an accumulation of intermediate metabolites. We proved computationally that the predicted overload behavior was due to substrate competition in the pathway. Second, to study the clinical relevance of this mechanism, we used patients' metabolite profiles and generated a humanized version of the computational model. While molecular competition did not affect the plasma metabolite profiles during MCAD deficiency, it was a key factor in explaining the characteristic acylcarnitine profiles of multiple acyl-CoA dehydrogenase deficient patients. The patient-specific computational models allowed us to predict the severity of the disease phenotype, providing a proof of principle for the systems medicine approach. CONCLUSION: We conclude that substrate competition is at the basis of the physiology seen in patients with mFAO disorders, a finding that may explain why these patients run a risk of a life-threatening metabolic catastrophe.


Assuntos
Acil-CoA Desidrogenase/deficiência , Erros Inatos do Metabolismo Lipídico/genética , Metabolismo dos Lipídeos/genética , Mitocôndrias/metabolismo , Acil-CoA Desidrogenase/genética , Acil-CoA Desidrogenase/metabolismo , Animais , Carnitina/análogos & derivados , Carnitina/metabolismo , Biologia Computacional , Simulação por Computador , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Humanos , Erros Inatos do Metabolismo Lipídico/metabolismo , Masculino , Redes e Vias Metabólicas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução , Proteômica , Especificidade por Substrato
9.
Neonatology ; 109(4): 297-302, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26907928

RESUMO

BACKGROUND: Many inborn errors of metabolism (IEMs) may present as sudden infant death (SID). Nowadays, increasing numbers of patients with IEMs are identified pre-symptomatically by population neonatal bloodspot screening (NBS) programmes. However, some patients escape early detection because their symptoms and signs start before NBS test results become available, they even die even before the sample for NBS has been drawn or because there are IEMs which are not included in the NBS programmes. OBJECTIVES AND METHODS: This was a comprehensive systematic literature review to identify all IEMs associated with SID, including their treatability and detectability by NBS technologies. Reye syndrome (RS) was included in the search strategy because this condition can be considered a possible pre-stage of SID in a continuum of aggravating symptoms. RESULTS: 43 IEMs were identified that were associated with SID and/or RS. Of these, (1) 26 can already present during the neonatal period, (2) treatment is available for at least 32, and (3) 26 can currently be identified by the analysis of acylcarnitines and amino acids in dried bloodspots (DBS). CONCLUSION: We advocate an extensive analysis of amino acids and acylcarnitines in blood/plasma/DBS and urine for all children who died suddenly and/or unexpectedly, including neonates in whom blood had not yet been drawn for the routine NBS test. The application of combined metabolite screening and DNA-sequencing techniques would facilitate fast identification and maximal diagnostic yield. This is important information for clinicians who need to maintain clinical awareness and decision-makers to improve population NBS programmes.


Assuntos
Erros Inatos do Metabolismo/diagnóstico , Triagem Neonatal/métodos , Síndrome de Reye/etiologia , Morte Súbita do Lactente/etiologia , Aminoácidos/sangue , Autopsia , Carnitina/análogos & derivados , Carnitina/sangue , Humanos , Lactente , Recém-Nascido , Erros Inatos do Metabolismo/complicações
10.
Pediatrics ; 134(4): e1224-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25246622

RESUMO

Multiple acyl coenzyme A dehydrogenase deficiency (MADD) is a severe inborn error of metabolism. Experiences with sodium-D,L-3-hydroxybutyrate (3-HB) treatment are limited although positive; however, the general view on outcome of severely affected patients with MADD is relatively pessimistic. Here we present an infant with MADD in whom the previously reported dose of 3-HB did not prevent the acute, severe, metabolic decompensation or progressive cardiomyopathy in the subsequent months. Only after a physiologic dose of 2600 mg/kg of 3-HB per day were ketone bodies detected in blood associated with improvement of the clinical course, N-terminal prohormone of brain natriuretic peptide and echocardiographic parameters. Long-term studies are warranted on 3-HB treatment in patients with MADD.


Assuntos
Ácido 3-Hidroxibutírico/administração & dosagem , Deficiência Múltipla de Acil Coenzima A Desidrogenase/diagnóstico por imagem , Deficiência Múltipla de Acil Coenzima A Desidrogenase/tratamento farmacológico , Índice de Gravidade de Doença , Feminino , Humanos , Recém-Nascido , Resultado do Tratamento , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...