Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Med (Lond) ; 4(1): 5, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182879

RESUMO

BACKGROUND: Tertiary lymphoid structures (TLSs) are dense accumulations of lymphocytes in inflamed peripheral tissues, including cancer, and are associated with improved survival and response to immunotherapy in various solid tumors. Histological TLS quantification has been proposed as a novel predictive and prognostic biomarker, but lack of standardized methods of TLS characterization hampers assessment of TLS densities across different patients, diseases, and clinical centers. METHODS: We introduce an approach based on HookNet-TLS, a multi-resolution deep learning model, for automated and unbiased TLS quantification and identification of germinal centers in routine hematoxylin and eosin stained digital pathology slides. We developed HookNet-TLS using n = 1019 manually annotated TCGA slides from clear cell renal cell carcinoma, muscle-invasive bladder cancer, and lung squamous cell carcinoma. RESULTS: Here we show that HookNet-TLS automates TLS quantification across multiple cancer types achieving human-level performance and demonstrates prognostic associations similar to visual assessment. CONCLUSIONS: HookNet-TLS has the potential to be used as a tool for objective quantification of TLS in routine H&E digital pathology slides. We make HookNet-TLS publicly available to promote its use in research.


Tertiary lymphoid structures (TLS) are dense accumulations of immune cells within a cancer. They have been associated with patient survival and treatment effectiveness. Quantification of TLS in cancer microscopy images may therefore aid clinical decision-making. However, no consensus for defining TLS in such images exists leading to inconsistent and variable findings across different labs and studies. We developed a computational tool for automated and objective TLS quantification in cancer images. The tool, called HookNet-TLS, integrates information from multiple image resolutions, which resembles the process of how a pathologist would identify these structures using a microscope. HookNet-TLS detected TLS similarly to trained researchers in three different tumor types. We provided access to HookNet-TLS to facilitate its development and use for TLS assessment in clinical decision-making and research into the role of TLS in cancer.

2.
NPJ Digit Med ; 5(1): 102, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869179

RESUMO

The digitalization of clinical workflows and the increasing performance of deep learning algorithms are paving the way towards new methods for tackling cancer diagnosis. However, the availability of medical specialists to annotate digitized images and free-text diagnostic reports does not scale with the need for large datasets required to train robust computer-aided diagnosis methods that can target the high variability of clinical cases and data produced. This work proposes and evaluates an approach to eliminate the need for manual annotations to train computer-aided diagnosis tools in digital pathology. The approach includes two components, to automatically extract semantically meaningful concepts from diagnostic reports and use them as weak labels to train convolutional neural networks (CNNs) for histopathology diagnosis. The approach is trained (through 10-fold cross-validation) on 3'769 clinical images and reports, provided by two hospitals and tested on over 11'000 images from private and publicly available datasets. The CNN, trained with automatically generated labels, is compared with the same architecture trained with manual labels. Results show that combining text analysis and end-to-end deep neural networks allows building computer-aided diagnosis tools that reach solid performance (micro-accuracy = 0.908 at image-level) based only on existing clinical data without the need for manual annotations.

3.
Med Image Anal ; 68: 101890, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33260110

RESUMO

We propose HookNet, a semantic segmentation model for histopathology whole-slide images, which combines context and details via multiple branches of encoder-decoder convolutional neural networks. Concentric patches at multiple resolutions with different fields of view, feed different branches of HookNet, and intermediate representations are combined via a hooking mechanism. We describe a framework to design and train HookNet for achieving high-resolution semantic segmentation and introduce constraints to guarantee pixel-wise alignment in feature maps during hooking. We show the advantages of using HookNet in two histopathology image segmentation tasks where tissue type prediction accuracy strongly depends on contextual information, namely (1) multi-class tissue segmentation in breast cancer and, (2) segmentation of tertiary lymphoid structures and germinal centers in lung cancer. We show the superiority of HookNet when compared with single-resolution U-Net models working at different resolutions as well as with a recently published multi-resolution model for histopathology image segmentation. We have made HookNet publicly available by releasing the source code1 as well as in the form of web-based applications2,3 based on the grand-challenge.org platform.


Assuntos
Processamento de Imagem Assistida por Computador , Semântica , Mama , Humanos , Redes Neurais de Computação , Software
4.
Med Image Anal ; 58: 101547, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31476576

RESUMO

The immune system is of critical importance in the development of cancer. The evasion of destruction by the immune system is one of the emerging hallmarks of cancer. We have built a dataset of 171,166 manually annotated CD3+ and CD8+ cells, which we used to train deep learning algorithms for automatic detection of lymphocytes in histopathology images to better quantify immune response. Moreover, we investigate the effectiveness of four deep learning based methods when different subcompartments of the whole-slide image are considered: normal tissue areas, areas with immune cell clusters, and areas containing artifacts. We have compared the proposed methods in breast, colon and prostate cancer tissue slides collected from nine different medical centers. Finally, we report the results of an observer study on lymphocyte quantification, which involved four pathologists from different medical centers, and compare their performance with the automatic detection. The results give insights on the applicability of the proposed methods for clinical use. U-Net obtained the highest performance with an F1-score of 0.78 and the highest agreement with manual evaluation (κ=0.72), whereas the average pathologists agreement with reference standard was κ=0.64. The test set and the automatic evaluation procedure are publicly available at lyon19.grand-challenge.org.


Assuntos
Aprendizado Profundo , Imuno-Histoquímica/métodos , Linfócitos/imunologia , Artefatos , Neoplasias da Mama/imunologia , Neoplasias do Colo/imunologia , Conjuntos de Dados como Assunto , Feminino , Humanos , Masculino , Países Baixos , Neoplasias da Próstata/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...