Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 31(1): 201-13, 2012 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-22036947

RESUMO

Early during Gram-negative sepsis, excessive release of pro-inflammatory cytokines can cause septic shock that is often followed by a state of immune paralysis characterized by the failure to mount adaptive immunity towards secondary microbial infections. Especially, the early mechanisms responsible for such immune hypo-responsiveness are unclear. Here, we show that TLR4 is the key immune sensing receptor to initiate paralysis of T-cell immunity after bacterial sepsis. Downstream of TLR4, signalling through TRIF but not MyD88 impaired the development of specific T-cell immunity against secondary infections. We identified type I interferon (IFN) released from splenic macrophages as the critical factor causing T-cell immune paralysis. Early during sepsis, type I IFN acted selectively on dendritic cells (DCs) by impairing antigen presentation and secretion of pro-inflammatory cytokines. Our results reveal a novel immune regulatory role for type I IFN in the initiation of septic immune paralysis, which is distinct from its well-known immune stimulatory effects. Moreover, we identify potential molecular targets for therapeutic intervention to overcome impairment of T-cell immunity after sepsis.


Assuntos
Imunidade Adaptativa , Interferon Tipo I/metabolismo , Macrófagos/metabolismo , Sepse/imunologia , Baço/metabolismo , Animais , Células Dendríticas/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/metabolismo , Sepse/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...