Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Neurobiol ; 83: 102779, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37672980

RESUMO

Human and animal experiments have shown that acquiring and storing information can require substantial amounts of metabolic energy. However, computational models of neural plasticity only seldom take this cost into account, and might thereby miss an important constraint on biological learning. This review explores various ways to reduce energy requirements for learning in neural networks. By comparing the resulting learning rules to cognitive and neurophysiological observations, we discuss how energy efficiency might have shaped biological learning.


Assuntos
Aprendizagem , Modelos Neurológicos , Animais , Humanos , Aprendizagem/fisiologia , Redes Neurais de Computação , Neurônios/fisiologia , Plasticidade Neuronal/fisiologia
2.
J Neurosci ; 43(21): 3838-3848, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-36977584

RESUMO

Sleep facilitates abstraction, but the exact mechanisms underpinning this are unknown. Here, we aimed to determine whether triggering reactivation in sleep could facilitate this process. We paired abstraction problems with sounds, then replayed these during either slow-wave sleep (SWS) or rapid eye movement (REM) sleep to trigger memory reactivation in 27 human participants (19 female). This revealed performance improvements on abstraction problems that were cued in REM, but not problems cued in SWS. Interestingly, the cue-related improvement was not significant until a follow-up retest 1 week after the manipulation, suggesting that REM may initiate a sequence of plasticity events that requires more time to be implemented. Furthermore, memory-linked trigger sounds evoked distinct neural responses in REM, but not SWS. Overall, our findings suggest that targeted memory reactivation in REM can facilitate visual rule abstraction, although this effect takes time to unfold.SIGNIFICANCE STATEMENT The ability to abstract rules from a corpus of experiences is a building block of human reasoning. Sleep is known to facilitate rule abstraction, but it remains unclear whether we can manipulate this process actively and which stage of sleep is most important. Targeted memory reactivation (TMR) is a technique that uses re-exposure to learning-related sensory cues during sleep to enhance memory consolidation. Here, we show that TMR, when applied during REM sleep, can facilitate the complex recombining of information needed for rule abstraction. Furthermore, we show that this qualitative REM-related benefit emerges over the course of a week after learning, suggesting that memory integration may require a slower form of plasticity.


Assuntos
Sinais (Psicologia) , Consolidação da Memória , Humanos , Feminino , Sono REM/fisiologia , Aprendizagem/fisiologia , Sono/fisiologia , Consolidação da Memória/fisiologia
3.
Bull Math Biol ; 82(12): 147, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33211192

RESUMO

We study the flow of electrical currents in spherical cells with a non-conducting core, so that current flow is restricted to a thin shell below the cell's membrane. Examples of such cells are fat storing cells (adipocytes). We derive the relation between current and voltage in the passive regime and examine the conditions under which the cell is electro-tonically compact. We compare our results to the well-studied case of electrical current flow in cylinder structures, such as neurons, described by the cable equation. In contrast to the cable, we find that for the sphere geometry (1) the voltage profile across the cell depends critically on the electrode geometry, and (2) the charging and discharging can be much faster than the membrane time constant; however, (3) voltage clamp experiments will incur similar distortion as in the cable case. We discuss the relevance for adipocyte function and experimental electro-physiology.


Assuntos
Adipócitos , Fenômenos Eletrofisiológicos , Modelos Biológicos , Adipócitos/fisiologia , Conceitos Matemáticos
4.
J Comput Neurosci ; 46(2): 141-144, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30949800

RESUMO

During neural development sensory stimulation induces long-term changes in the receptive field of the neurons that encode the stimuli. The Bienenstock-Cooper-Munro (BCM) model was introduced to model and analyze this process computationally, and it remains one of the major models of unsupervised plasticity to this day. Here we show that for some stimulus types, the convergence of the synaptic weights under the BCM rule slows down exponentially as the number of synapses per neuron increases. We present a mathematical analysis of the slowdown that shows also how the slowdown can be avoided.


Assuntos
Simulação por Computador , Modelos Neurológicos , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Algoritmos , Humanos , Sensação/fisiologia
5.
Cogn Affect Behav Neurosci ; 19(1): 123-137, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30341623

RESUMO

EEG studies suggest that the emotional content of visual stimuli is processed rapidly. In particular, the C1 component, which occurs up to 100 ms after stimulus onset and likely reflects activity in primary visual cortex V1, has been reported to be sensitive to emotional faces. However, difficulties replicating these results have been reported. We hypothesized that the nature of the task and attentional condition are key to reconcile the conflicting findings. We report three experiments of EEG activity during the C1 time range elicited by peripherally presented neutral and fearful faces under various attentional conditions: the faces were spatially attended or unattended and were either task-relevant or not. Using traditional event-related potential analysis, we found that the early activity changed depending on facial expression, attentional condition, and task. In addition, we trained classifiers to discriminate the different conditions from the EEG signals. Although the classifiers were not able to discriminate between facial expressions in any condition, they uncovered differences between spatially attended and unattended faces but solely when these were task-irrelevant. In addition, this effect was only present for neutral faces. Our study provides further indication that attention and task are key parameters when measuring early differences between emotional and neutral visual stimuli.


Assuntos
Atenção/fisiologia , Emoções/fisiologia , Medo/psicologia , Percepção Visual/fisiologia , Adulto , Eletroencefalografia/métodos , Potenciais Evocados , Expressão Facial , Feminino , Humanos , Masculino , Estimulação Luminosa/métodos , Adulto Jovem
6.
Neural Comput ; 30(12): 3168-3188, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30216141

RESUMO

Throughout the nervous system, information is commonly coded in activity distributed over populations of neurons. In idealized situations where a single, continuous stimulus is encoded in a homogeneous population code, the value of the encoded stimulus can be read out without bias. However, in many situations, multiple stimuli are simultaneously present; for example, multiple motion patterns might overlap. Here we find that when multiple stimuli that overlap in their neural representation are simultaneously encoded in the population, biases in the read-out emerge. Although the bias disappears in the absence of noise, the bias is remarkably persistent at low noise levels. The bias can be reduced by competitive encoding schemes or by employing complex decoders. To study the origin of the bias, we develop a novel general framework based on gaussian processes that allows an accurate calculation of the estimate distributions of maximum likelihood decoders, and reveals that the distribution of estimates is bimodal for overlapping stimuli. The results have implications for neural coding and behavioral experiments on, for instance, overlapping motion patterns.


Assuntos
Encéfalo/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Animais , Humanos
7.
J Neurophysiol ; 120(3): 942-952, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29847234

RESUMO

Neurons in the primary visual cortex respond to oriented stimuli placed in the center of their receptive field, yet their response is modulated by stimuli outside the receptive field (the surround). Classically, this surround modulation is assumed to be strongest if the orientation of the surround stimulus aligns with the neuron's preferred orientation, irrespective of the actual center stimulus. This neuron-dependent surround modulation has been used to explain a wide range of psychophysical phenomena, such as biased tilt perception and saliency of stimuli with contrasting orientation. However, several neurophysiological studies have shown that for most neurons surround modulation is instead center dependent: it is strongest if the surround orientation aligns with the center stimulus. As the impact of such center-dependent modulation on the population level is unknown, we examine this using computational models. We find that with neuron-dependent modulation the biases in orientation coding, commonly used to explain the tilt illusion, are larger than psychophysically reported, but disappear with center-dependent modulation. Therefore we suggest that a mixture of the two modulation types is necessary to quantitatively explain the psychophysically observed biases. Next, we find that under center-dependent modulation average population responses are more sensitive to orientation differences between stimuli, which in theory could improve saliency detection. However, this effect depends on the specific saliency model. Overall, our results thus show that center-dependent modulation reduces coding bias, while possibly increasing the sensitivity to salient features. NEW & NOTEWORTHY Neural responses in the primary visual cortex are modulated by stimuli surrounding the receptive field. Most earlier studies assume this modulation depends on the neuron's tuning properties, but experiments have shown that instead it depends mostly on the stimulus characteristics. We show that this simple change leads to neural coding that is less biased and under some conditions more sensitive to salient features.


Assuntos
Modelos Neurológicos , Neurônios/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Humanos , Ilusões , Estimulação Luminosa , Campos Visuais
8.
Sci Rep ; 8(1): 3493, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29472547

RESUMO

In vivo calcium imaging has become a method of choice to image neuronal population activity throughout the nervous system. These experiments generate large sequences of images. Their analysis is computationally intensive and typically involves motion correction, image segmentation into regions of interest (ROIs), and extraction of fluorescence traces from each ROI. Out of focus fluorescence from surrounding neuropil and other cells can strongly contaminate the signal assigned to a given ROI. In this study, we introduce the FISSA toolbox (Fast Image Signal Separation Analysis) for neuropil decontamination. Given pre-defined ROIs, the FISSA toolbox automatically extracts the surrounding local neuropil and performs blind-source separation with non-negative matrix factorization. Using both simulated and in vivo data, we show that this toolbox performs similarly or better than existing published methods. FISSA requires only little RAM, and allows for fast processing of large datasets even on a standard laptop. The FISSA toolbox is available in Python, with an option for MATLAB format outputs, and can easily be integrated into existing workflows. It is available from Github and the standard Python repositories.

9.
Neural Comput ; 29(7): 1745-1768, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28562220

RESUMO

Knowledge of synaptic input is crucial for understanding synaptic integration and ultimately neural function. However, in vivo, the rates at which synaptic inputs arrive are high, so that it is typically impossible to detect single events. We show here that it is nevertheless possible to extract the properties of the events and, in particular, to extract the event rate, the synaptic time constants, and the properties of the event size distribution from in vivo voltage-clamp recordings. Applied to cerebellar interneurons, our method reveals that the synaptic input rate increases from 600 Hz during rest to 1000 Hz during locomotion, while the amplitude and shape of the synaptic events are unaffected by this state change. This method thus complements existing methods to measure neural function in vivo.


Assuntos
Interneurônios/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Sinapses/fisiologia , Potenciais de Ação , Animais , Biofísica , Cerebelo/citologia , Simulação por Computador , Estimulação Elétrica , Técnicas de Patch-Clamp
10.
Artigo em Inglês | MEDLINE | ID: mdl-28093547

RESUMO

Growing experimental evidence shows that both homeostatic and Hebbian synaptic plasticity can be expressed presynaptically as well as postsynaptically. In this review, we start by discussing this evidence and methods used to determine expression loci. Next, we discuss the functional consequences of this diversity in pre- and postsynaptic expression of both homeostatic and Hebbian synaptic plasticity. In particular, we explore the functional consequences of a biologically tuned model of pre- and postsynaptically expressed spike-timing-dependent plasticity complemented with postsynaptic homeostatic control. The pre- and postsynaptic expression in this model predicts (i) more reliable receptive fields and sensory perception, (ii) rapid recovery of forgotten information (memory savings), and (iii) reduced response latencies, compared with a model with postsynaptic expression only. Finally, we discuss open questions that will require a considerable research effort to better elucidate how the specific locus of expression of homeostatic and Hebbian plasticity alters synaptic and network computations.This article is part of the themed issue 'Integrating Hebbian and homeostatic plasticity'.


Assuntos
Homeostase , Plasticidade Neuronal , Sensação , Animais , Humanos , Memória , Modelos Neurológicos , Tempo de Reação
11.
Vision Res ; 126: 164-173, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26232611

RESUMO

As expressed in the Gestalt law of good continuation, human perception tends to associate stimuli that form smooth continuations. Contextual modulation in primary visual cortex, in the form of association fields, is believed to play an important role in this process. Yet a unified and principled account of the good continuation law on the neural level is lacking. In this study we introduce a population model of primary visual cortex. Its contextual interactions depend on the elastica curvature energy of the smoothest contour connecting oriented bars. As expected, this model leads to association fields consistent with data. However, in addition the model displays tilt-illusions for stimulus configurations with grating and single bars that closely match psychophysics. Furthermore, the model explains not only pop-out of contours amid a variety of backgrounds, but also pop-out of single targets amid a uniform background. We thus propose that elastica is a unifying principle of the visual cortical network.


Assuntos
Percepção de Forma/fisiologia , Ilusões Ópticas/fisiologia , Percepção Visual/fisiologia , Teoria Gestáltica , Humanos , Modelos Neurológicos , Modelos Teóricos , Estimulação Luminosa , Psicofísica
12.
Elife ; 42015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-26146940

RESUMO

Neural computations underlying cognitive functions require calibration of the strength of excitatory and inhibitory synaptic connections and are associated with modulation of gamma frequency oscillations in network activity. However, principles relating gamma oscillations, synaptic strength and circuit computations are unclear. We address this in attractor network models that account for grid firing and theta-nested gamma oscillations in the medial entorhinal cortex. We show that moderate intrinsic noise massively increases the range of synaptic strengths supporting gamma oscillations and grid computation. With moderate noise, variation in excitatory or inhibitory synaptic strength tunes the amplitude and frequency of gamma activity without disrupting grid firing. This beneficial role for noise results from disruption of epileptic-like network states. Thus, moderate noise promotes independent control of multiplexed firing rate- and gamma-based computational mechanisms. Our results have implications for tuning of normal circuit function and for disorders associated with changes in gamma oscillations and synaptic strength.


Assuntos
Potenciais de Ação , Córtex Entorrinal/fisiologia , Ritmo Gama , Neurônios/fisiologia , Ruído , Transmissão Sináptica , Humanos , Modelos Neurológicos , Ritmo Teta
13.
PLoS Comput Biol ; 11(7): e1004357, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26154297

RESUMO

Neurons are equipped with homeostatic mechanisms that counteract long-term perturbations of their average activity and thereby keep neurons in a healthy and information-rich operating regime. While homeostasis is believed to be crucial for neural function, a systematic analysis of homeostatic control has largely been lacking. The analysis presented here analyses the necessary conditions for stable homeostatic control. We consider networks of neurons with homeostasis and show that homeostatic control that is stable for single neurons, can destabilize activity in otherwise stable recurrent networks leading to strong non-abating oscillations in the activity. This instability can be prevented by slowing down the homeostatic control. The stronger the network recurrence, the slower the homeostasis has to be. Next, we consider how non-linearities in the neural activation function affect these constraints. Finally, we consider the case that homeostatic feedback is mediated via a cascade of multiple intermediate stages. Counter-intuitively, the addition of extra stages in the homeostatic control loop further destabilizes activity in single neurons and networks. Our theoretical framework for homeostasis thus reveals previously unconsidered constraints on homeostasis in biological networks, and identifies conditions that require the slow time-constants of homeostatic regulation observed experimentally.


Assuntos
Potenciais de Ação/fisiologia , Relógios Biológicos/fisiologia , Retroalimentação Fisiológica/fisiologia , Homeostase/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Animais , Simulação por Computador , Humanos
14.
PLoS Comput Biol ; 11(6): e1004265, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26046817

RESUMO

It is believed that energy efficiency is an important constraint in brain evolution. As synaptic transmission dominates energy consumption, energy can be saved by ensuring that only a few synapses are active. It is therefore likely that the formation of sparse codes and sparse connectivity are fundamental objectives of synaptic plasticity. In this work we study how sparse connectivity can result from a synaptic learning rule of excitatory synapses. Information is maximised when potentiation and depression are balanced according to the mean presynaptic activity level and the resulting fraction of zero-weight synapses is around 50%. However, an imbalance towards depression increases the fraction of zero-weight synapses without significantly affecting performance. We show that imbalanced plasticity corresponds to imposing a regularising constraint on the L1-norm of the synaptic weight vector, a procedure that is well-known to induce sparseness. Imbalanced plasticity is biophysically plausible and leads to more efficient synaptic configurations than a previously suggested approach that prunes synapses after learning. Our framework gives a novel interpretation to the high fraction of silent synapses found in brain regions like the cerebellum.


Assuntos
Modelos Neurológicos , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Cerebelo/fisiologia , Humanos
15.
Cell Rep ; 11(8): 1319-30, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25981037

RESUMO

Neuronal activity in primary motor cortex (M1) correlates with behavioral state, but the cellular mechanisms underpinning behavioral state-dependent modulation of M1 output remain largely unresolved. Here, we performed in vivo patch-clamp recordings from layer 5B (L5B) pyramidal neurons in awake mice during quiet wakefulness and self-paced, voluntary movement. We show that L5B output neurons display bidirectional (i.e., enhanced or suppressed) firing rate changes during movement, mediated via two opposing subthreshold mechanisms: (1) a global decrease in membrane potential variability that reduced L5B firing rates (L5Bsuppressed neurons), and (2) a coincident noradrenaline-mediated increase in excitatory drive to a subpopulation of L5B neurons (L5Benhanced neurons) that elevated firing rates. Blocking noradrenergic receptors in forelimb M1 abolished the bidirectional modulation of M1 output during movement and selectively impaired contralateral forelimb motor coordination. Together, our results provide a mechanism for how noradrenergic neuromodulation and network-driven input changes bidirectionally modulate M1 output during motor behavior.


Assuntos
Córtex Motor/fisiologia , Células Piramidais/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
16.
Elife ; 42015 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-25643396

RESUMO

Hippocampal place cells encode an animal's past, current, and future location through sequences of action potentials generated within each cycle of the network theta rhythm. These sequential representations have been suggested to result from temporally coordinated synaptic interactions within and between cell assemblies. Instead, we find through simulations and analysis of experimental data that rate and phase coding in independent neurons is sufficient to explain the organization of CA1 population activity during theta states. We show that CA1 population activity can be described as an evolving traveling wave that exhibits phase coding, rate coding, spike sequences and that generates an emergent population theta rhythm. We identify measures of global remapping and intracellular theta dynamics as critical for distinguishing mechanisms for pacemaking and coordination of sequential population activity. Our analysis suggests that, unlike synaptically coupled assemblies, independent neurons flexibly generate sequential population activity within the duration of a single theta cycle.


Assuntos
Região CA1 Hipocampal/fisiologia , Ritmo Teta , Animais , Modelos Biológicos
17.
Neural Comput ; 27(4): 801-18, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25602776

RESUMO

The voltage-gated Na and K channels in neurons are responsible for action potential generation. Because ion channels open and close in a stochastic fashion, spontaneous (ectopic) action potentials can result even in the absence of stimulation. While spontaneous action potentials have been studied in detail in single-compartment models, studies on spatially extended processes have been limited. The simulations and analysis presented here show that spontaneous rate in unmyelinated axon depends nonmonotonically on the length of the axon, that the spontaneous activity has sub-Poisson statistics, and that neural coding can be hampered by the spontaneous spikes by reducing the probability of transmitting the first spike in a train.


Assuntos
Potenciais de Ação/fisiologia , Axônios/fisiologia , Modelos Neurológicos , Neurônios/citologia , Neurônios/fisiologia , Animais , Simulação por Computador , Fibras Nervosas Amielínicas/fisiologia
18.
Front Comput Neurosci ; 8: 105, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25360105

RESUMO

Electrical signaling in neurons is mediated by the opening and closing of large numbers of individual ion channels. The ion channels' state transitions are stochastic and introduce fluctuations in the macroscopic current through ion channel populations. This creates an unavoidable source of intrinsic electrical noise for the neuron, leading to fluctuations in the membrane potential and spontaneous spikes. While this effect is well known, the impact of channel noise on single neuron dynamics remains poorly understood. Most results are based on numerical simulations. There is no agreement, even in theoretical studies, on which ion channel type is the dominant noise source, nor how inclusion of additional ion channel types affects voltage noise. Here we describe a framework to calculate voltage noise directly from an arbitrary set of ion channel models, and discuss how this can be use to estimate spontaneous spike rates.

19.
Artigo em Inglês | MEDLINE | ID: mdl-23761760

RESUMO

Short-term synaptic plasticity is highly diverse across brain area, cortical layer, cell type, and developmental stage. Since short-term plasticity (STP) strongly shapes neural dynamics, this diversity suggests a specific and essential role in neural information processing. Therefore, a correct characterization of short-term synaptic plasticity is an important step towards understanding and modeling neural systems. Phenomenological models have been developed, but they are usually fitted to experimental data using least-mean-square methods. We demonstrate that for typical synaptic dynamics such fitting may give unreliable results. As a solution, we introduce a Bayesian formulation, which yields the posterior distribution over the model parameters given the data. First, we show that common STP protocols yield broad distributions over some model parameters. Using our result we propose a experimental protocol to more accurately determine synaptic dynamics parameters. Next, we infer the model parameters using experimental data from three different neocortical excitatory connection types. This reveals connection-specific distributions, which we use to classify synaptic dynamics. Our approach to demarcate connection-specific synaptic dynamics is an important improvement on the state of the art and reveals novel features from existing data.

20.
Neuron ; 77(1): 141-54, 2013 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-23312522

RESUMO

Cortical circuits are thought to multiplex firing rate codes with temporal codes that rely on oscillatory network activity, but the circuit mechanisms that combine these coding schemes are unclear. We establish with optogenetic activation of layer II of the medial entorhinal cortex that theta frequency drive to this circuit is sufficient to generate nested gamma frequency oscillations in synaptic activity. These nested gamma oscillations closely resemble activity during spatial exploration, are generated by local feedback inhibition without recurrent excitation, and have clock-like features suitable as reference signals for multiplexing temporal codes within rate-coded grid firing fields. In network models deduced from our data, feedback inhibition supports coexistence of theta-nested gamma oscillations with attractor states that generate grid firing fields. These results indicate that grid cells communicate primarily via inhibitory interneurons. This circuit mechanism enables multiplexing of oscillation-based temporal codes with rate-coded attractor states.


Assuntos
Potenciais de Ação/fisiologia , Córtex Cerebral/fisiologia , Retroalimentação Fisiológica/fisiologia , Rede Nervosa/fisiologia , Ritmo Teta/fisiologia , Animais , Ondas Encefálicas/fisiologia , Camundongos , Camundongos Transgênicos , Técnicas de Cultura de Órgãos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...