Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Struct Mol Biol ; 29(6): 586-591, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35710836

RESUMO

Cohesin structures the genome through the formation of chromatin loops and by holding together the sister chromatids. The acetylation of cohesin's SMC3 subunit is a dynamic process that involves the acetyltransferase ESCO1 and deacetylase HDAC8. Here we show that this cohesin acetylation cycle controls the three-dimensional genome in human cells. ESCO1 restricts the length of chromatin loops, and of architectural stripes emanating from CTCF sites. HDAC8 conversely promotes the extension of such loops and stripes. This role in controlling loop length turns out to be distinct from the canonical role of cohesin acetylation that protects against WAPL-mediated DNA release. We reveal that acetylation controls the interaction of cohesin with PDS5A to restrict chromatin loop length. Our data support a model in which this PDS5A-bound state acts as a brake that enables the pausing and restart of loop enlargement. The cohesin acetylation cycle hereby provides punctuation in the process of genome folding.


Assuntos
Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona , Acetilação , Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Cromatina , Proteínas Cromossômicas não Histona/metabolismo , Histona Desacetilases/genética , Humanos , Proteínas Nucleares/metabolismo , Proteínas Repressoras/genética , Coesinas
2.
Curr Opin Cell Biol ; 70: 84-90, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33545664

RESUMO

Cohesin and CTCF are key to the 3D folding of interphase chromosomes. Cohesin forms chromatin loops via loop extrusion, a process that involves the formation and enlargement of DNA loops. The architectural protein CTCF controls this process by acting as an anchor for chromatin looping. How CTCF controls cohesin has long been a mystery. Recent work shows that CTCF dictates chromatin looping via a direct interaction of its N-terminus with cohesin. CTCF's ability to regulate chromatin looping turns out to also be partially dependent on several RNA-binding domains. In this review, we discuss recent insights and consider how cohesin and CTCF together may orchestrate the folding of the genome into chromosomal loops.


Assuntos
Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona , Fator de Ligação a CCCTC , Proteínas de Ciclo Celular/metabolismo , Cromatina , Proteínas Cromossômicas não Histona/metabolismo , Coesinas
3.
Nature ; 578(7795): 472-476, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31905366

RESUMO

Cohesin catalyses the folding of the genome into loops that are anchored by CTCF1. The molecular mechanism of how cohesin and CTCF structure the 3D genome has remained unclear. Here we show that a segment within the CTCF N terminus interacts with the SA2-SCC1 subunits of human cohesin. We report a crystal structure of SA2-SCC1 in complex with CTCF at a resolution of 2.7 Å, which reveals the molecular basis of the interaction. We demonstrate that this interaction is specifically required for CTCF-anchored loops and contributes to the positioning of cohesin at CTCF binding sites. A similar motif is present in a number of established and newly identified cohesin ligands, including the cohesin release factor WAPL2,3. Our data suggest that CTCF enables the formation of chromatin loops by protecting cohesin against loop release. These results provide fundamental insights into the molecular mechanism that enables the dynamic regulation of chromatin folding by cohesin and CTCF.


Assuntos
Fator de Ligação a CCCTC/química , Fator de Ligação a CCCTC/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Sítios de Ligação , Proteínas de Transporte/metabolismo , Cromatina/química , Cromatina/metabolismo , Cristalografia por Raios X , DNA/química , DNA/metabolismo , Humanos , Ligantes , Modelos Moleculares , Proteínas Nucleares/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Estabilidade Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Coesinas
4.
Trends Genet ; 34(6): 477-487, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29606284

RESUMO

What drives the formation of chromatin loops has been a long-standing question in chromosome biology. Recent work provides major insight into the basic principles behind loop formation. Structural maintenance of chromosomes (SMC) complexes, that are conserved from bacteria to humans, are key to this process. The SMC family includes condensin and cohesin, which structure chromosomes to enable mitosis and long-range gene regulation. We discuss novel insights into the mechanism of loop formation and the implications for how these complexes ultimately shape chromosomes. A picture is emerging in which these complexes form small loops that they then processively enlarge. It appears that SMC complexes act by family-wide basic principles, with complex-specific levels of control.


Assuntos
Proteínas de Transporte/genética , Cromatina/genética , Cromossomos/genética , Mitose/genética , Proteínas Nucleares/genética , Adenosina Trifosfatases/genética , Fator de Ligação a CCCTC/genética , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Humanos , Complexos Multiproteicos/genética , Coesinas
5.
Cell ; 169(4): 693-707.e14, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28475897

RESUMO

The spatial organization of chromosomes influences many nuclear processes including gene expression. The cohesin complex shapes the 3D genome by looping together CTCF sites along chromosomes. We show here that chromatin loop size can be increased and that the duration with which cohesin embraces DNA determines the degree to which loops are enlarged. Cohesin's DNA release factor WAPL restricts this loop extension and also prevents looping between incorrectly oriented CTCF sites. We reveal that the SCC2/SCC4 complex promotes the extension of chromatin loops and the formation of topologically associated domains (TADs). Our data support the model that cohesin structures chromosomes through the processive enlargement of loops and that TADs reflect polyclonal collections of loops in the making. Finally, we find that whereas cohesin promotes chromosomal looping, it rather limits nuclear compartmentalization. We conclude that the balanced activity of SCC2/SCC4 and WAPL enables cohesin to correctly structure chromosomes.


Assuntos
Proteínas de Transporte/metabolismo , Núcleo Celular/metabolismo , Cromatina/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Acetiltransferases/metabolismo , Fator de Ligação a CCCTC , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA , Elongases de Ácidos Graxos , Edição de Genes , Humanos , Complexos Multiproteicos/metabolismo , Proteínas Repressoras/metabolismo , Coesinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...