Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Sci ; 136(1): 216-41, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23956101

RESUMO

The bile salt export pump (BSEP) is expressed at the canalicular domain of hepatocytes, where it serves as the primary route of elimination for monovalent bile acids (BAs) into the bile canaliculi. The most compelling evidence linking dysfunction in BA transport with liver injury in humans is found with carriers of mutations that render BSEP nonfunctional. Based on mounting evidence, there appears to be a strong association between drug-induced BSEP interference and liver injury in humans; however, causality has not been established. For this reason, drug-induced BSEP interference is best considered a susceptibility factor for liver injury as other host- or drug-related properties may contribute to the development of hepatotoxicity. To better understand the association between BSEP interference and liver injury in humans, over 600 marketed or withdrawn drugs were evaluated in BSEP expressing membrane vesicles. The example of a compound that failed during phase 1 human trials is also described, AMG 009. AMG 009 showed evidence of liver injury in humans that was not predicted by preclinical safety studies, and BSEP inhibition was implicated. For 109 of the drugs with some effect on in vitro BSEP function, clinical use, associations with hepatotoxicity, pharmacokinetic data, and other information were annotated. A steady state concentration (C(ss)) for each of these annotated drugs was estimated, and a ratio between this value and measured IC50 potency values were calculated in an attempt to relate exposure to in vitro potencies. When factoring for exposure, 95% of the annotated compounds with a C(ss)/BSEP IC50 ratio ≥ 0.1 were associated with some form of liver injury. We then investigated the relationship between clinical evidence of liver injury and effects to multidrug resistance-associated proteins (MRPs) believed to play a role in BA homeostasis. The effect of 600+ drugs on MRP2, MRP3, and MRP4 function was also evaluated in membrane vesicle assays. Drugs with a C(ss)/BSEP IC50 ratio ≥ 0.1 and a C(ss)/MRP IC50 ratio ≥ 0.1 had almost a 100% correlation with some evidence of liver injury in humans. These data suggest that integration of exposure data, and knowledge of an effect to not only BSEP but also one or more of the MRPs, is a useful tool for informing the potential for liver injury due to altered BA transport.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/etiologia , Fígado/efeitos dos fármacos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Transporte Biológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Análise por Conglomerados , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/metabolismo , Humanos , Fígado/metabolismo , Masculino , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Farmacocinética , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/metabolismo , Medição de Risco , Fatores de Risco , Testes de Toxicidade/métodos
2.
Curr Protoc Toxicol ; Chapter 23: Unit 23.5, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23169270

RESUMO

The use of plasma membrane vesicles that overexpress the bile salt export pump (BSEP) or multidrug resistance-associated protein 2, 3, or 4 (MRP2-4) with an in vitro vacuum filtration system offers a rapid and reliable means for screening drug candidates for their effects on transporter function in hepatocytes and thus their potential for causing drug-induced liver injury (DILI). Comparison of transporter activity in the presence and absence of ATP allows for determination of a specific assay window for each transporter. This window is used to determine the degree to which each test compound inhibits transporter activity. This assay battery is helpful for prioritizing and rank-ordering compounds within a chemical series with respect to each other and in the context of known inhibitors of transporter activity and/or liver injury. This model can be used to influence the drug development process at an early stage and provide rapid feedback regarding the selection of compounds for advancement to in vivo safety evaluations. A detailed protocol for the high-throughput assessment of ABC transporter function is provided, including specific recommendations for curve-fitting to help ensure consistent results.


Assuntos
Transportadores de Cassetes de Ligação de ATP/fisiologia , Bioensaio/métodos , Vesículas Transportadoras/fisiologia , Membrana Celular , Avaliação Pré-Clínica de Medicamentos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Modelos Lineares , Contagem de Cintilação
3.
Toxicol Sci ; 118(2): 485-500, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20829430

RESUMO

The bile salt export pump (BSEP) is an efflux transporter, driving the elimination of endobiotic and xenobiotic substrates from hepatocytes into the bile. More specifically, it is responsible for the elimination of monovalent, conjugated bile salts, with little or no assistance from other apical transporters. Disruption of BSEP activity through genetic disorders is known to manifest in clinical liver injury such as progressive familial intrahepatic cholestasis type 2. Drug-induced disruption of BSEP is hypothesized to play a role in the development of liver injury for several marketed or withdrawn therapeutics. Unfortunately, preclinical animal models have been poor predictors of the liver injury associated with BSEP interference observed for humans, possibly because of interspecies differences in bile acid composition, differences in hepatobiliary transporter modulation or constitutive expression, as well as other mechanisms. Thus, a BSEP-mediated liver liability may go undetected until the later stages of drug development, such as during clinical trials or even postlicensing. In the absence of a relevant preclinical test system for BSEP-mediated liver injury, the toxicological relevance of available in vitro models to human health rely on the use of benchmark compounds with known clinical outcomes, such as marketed or withdrawn drugs. In this study, membrane vesicles harvested from BSEP-transfected insect cells were used to assess the activity of more than 200 benchmark compounds to thoroughly investigate the relationship between interference with BSEP function and liver injury. The data suggest a relatively strong association between the pharmacological interference with BSEP function and human hepatotoxicity. Although the most accurate translation of risk would incorporate pharmacological potency, pharmacokinetics, clearance mechanisms, tissue distribution, physicochemical properties, indication, and other drug attributes, the additional understanding of a compound's potency for BSEP interference should help to limit or avoid BSEP-related liver liabilities in humans that are not often detected by standard preclinical animal models.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Avaliação Pré-Clínica de Medicamentos/métodos , Xenobióticos/toxicidade , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Animais , Bioensaio , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Vesículas Citoplasmáticas/efeitos dos fármacos , Vesículas Citoplasmáticas/metabolismo , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Ratos , Reprodutibilidade dos Testes , Spodoptera/citologia , Transfecção
4.
Assay Drug Dev Technol ; 7(3): 281-93, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19604106

RESUMO

The ability to combine primary hit identification assays with target profiling would significantly streamline the current drug discovery process. Working towards this end, we report here the development of a microarray-based ligand binding assay that supports multiplexed analysis of G protein-coupled receptor systems in a 96-well microplate format that is compatible with the equipment and infrastructure typical of high-throughput screening laboratories. A prototype microarray was generated by pin-printing seven different receptors within the wells of a specially coated glass-bottom microplate and assaying with a cocktail of fluorescent ligands. Development of the multiplexed system included optimization of methods for depositing receptor membrane proteins and establishing a generic set of assay conditions that simultaneously satisfied the pharmacology requirements of all of the receptor systems included on the array. The multiplexed system is shown to produce valid pharmacological results as evidenced by its ability to report K(i) values for receptor-specific fluorescent ligands and rank ordered potencies for diagnostic displacing compounds comparable to values generated by conventional simplexed assays. Moreover, the results of a 40-compound mini-screen confirmed that the assay accurately identifies valid hits. The results suggest the assay may be immediately suitable for routine profiling tasks and demonstrate the potential of the format for high-throughput multiplexed drug discovery.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Análise em Microsséries/métodos , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Soluções Tampão , Interpretação Estatística de Dados , Dimetil Sulfóxido/química , Desenho de Fármacos , Perfilação da Expressão Gênica , Humanos , Indicadores e Reagentes , Ligantes , Ligação Proteica , Proteínas/química , Receptores de Droga/química , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Solventes
5.
Assay Drug Dev Technol ; 7(2): 133-42, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19505230

RESUMO

The G protein-coupled receptor (GPCR) G2A (for G2 accumulation) was identified as a stress-inducible antiproliferative cell cycle regulator. Targeted G2A gene deletion in mice resulted in systemic lupus erythematosus-like and atherosclerotic lesion phenotypes. These findings suggested that G2A may be a therapeutic target for cancers and autoimmune and cardiovascular diseases. The G2A receptor is cytotoxic upon ectopic expression, and its cognate ligand has not been identified, making it difficult to generate a cell line for screening using a conventional approach. The function of human G2A remains obscure. Here we show that by using an inducible T-REx (Invitrogen, Carlsbad, CA) expression system an inducible G2A functional cell-based beta-lactamase reporter assay could be developed using the constitutive activity of the receptor. Furthermore, G2A expression levels can be controlled under this inducible system to avoid the expression artifacts of conventional approaches using constitutive expression vectors. This stable cell line expressing the human G2A receptor was screened against a chemical library containing 740,000 compounds, and small molecules showing selective agonistic activity on G2A were identified. We believe the strategy employed here for G2A should be applicable to other "intractable" GPCRs where target gene expression results in cytotoxic and/or high constitutive activities.


Assuntos
Proteínas de Ciclo Celular/agonistas , Proteínas de Ciclo Celular/genética , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , beta-Lactamases/metabolismo , Apoptose , Proteínas de Ciclo Celular/fisiologia , Linhagem Celular , Citometria de Fluxo , Humanos , Interferência de RNA , Receptores Acoplados a Proteínas G/fisiologia , beta-Lactamases/genética
6.
J Biomol Screen ; 13(8): 748-54, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18460694

RESUMO

The measurement of ligand receptor binding parameters for G-protein-coupled receptors is indispensable in the drug discovery process. Traditional ligand receptor binding assays require scale-up of cells and membrane preparations, which is an expensive and time-consuming process. In this report, the authors describe the development of a homogeneous live-cell binding assay for GPCRs using a fluorophore-labeled nonpeptide ligand. The model assay used Cy3B-labeled telenzepine and Chinese hamster ovary cells expressing M1 muscarinic acetylcholine receptors. This homogeneous live-cell fluorescence binding assay format is superior to the traditional binding methods because it measures binding of a ligand to intact receptors on living cells. The assay requires no washing or separation steps, thereby allowing a real-time kinetic readout for the determination of ligand association and dissociation from the intact receptors. The results also suggest that miniaturization is feasible without compromising the data quality.


Assuntos
Bioensaio/métodos , Receptores Acoplados a Proteínas G/metabolismo , Animais , Atropina/metabolismo , Benzenossulfonatos/metabolismo , Células CHO , Carbocianinas/metabolismo , Cricetinae , Cricetulus , Corantes Fluorescentes/metabolismo , Ligantes , Miniaturização , Antagonistas Muscarínicos/química , Antagonistas Muscarínicos/metabolismo , Parassimpatolíticos/metabolismo , Pirenzepina/análogos & derivados , Pirenzepina/metabolismo , Quinuclidinil Benzilato/química , Quinuclidinil Benzilato/metabolismo , Receptor Muscarínico M1/metabolismo , Receptores Acoplados a Proteínas G/genética
7.
Assay Drug Dev Technol ; 6(1): 83-94, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18336088

RESUMO

The Epic cell assay technology (Corning Inc., Corning, NY) uses a resonant waveguide grating optical biosensor to measure cellular response to ligands manifested through dynamic mass redistribution (DMR) of cellular contents. The DMR measurement is a noninvasive, label-free assay that can be used to assess the pharmacological properties of compounds. In this study, a panel of 12 compounds was evaluated against two G protein-coupled receptor (GPCR) targets in recombinant expressed cell lines using the Corning Epic system in 384-well microplates. The evaluation was performed in a double-blinded fashion such that the identity and properties of both the GPCR targets and compounds were unknown to the researchers at the time of the study. Analysis of the DMR response from cell stimulation was used to identify compounds that functioned as agonists or antagonists and to evaluate the associated efficacy and potency. DMR results were shown to have good agreement with data obtained from cyclic AMP and calcium flux assays for compounds evaluated. A further analysis was performed and successfully identified the signaling pathways that the two GPCRs activated. In addition, the DMR measurement was able to detect responses from an endogenous receptor in these cells. The Epic DMR technology provides a generic platform amenable to pharmacological evaluation of cellular responses to GPCR activation in a label-free live cell assay format.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos/estatística & dados numéricos , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Animais , Técnicas Biossensoriais , Células CHO , Cálcio/metabolismo , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , Cinética , Modelos Estatísticos , Receptores Acoplados a Proteínas G/biossíntese , Receptores Acoplados a Proteínas G/genética , Proteínas Recombinantes , Transdução de Sinais/efeitos dos fármacos
8.
Bioorg Med Chem Lett ; 16(19): 5066-72, 2006 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16887348

RESUMO

Melanin-concentrating hormone (MCH) is a cyclic 19 amino acid orexigenic neuropeptide. The action of MCH on feeding is thought to involve the activation of its respective G protein-coupled receptor MCH-R1. Consequently, antagonists that block MCH regulated MCH-R1 activity may provide a viable approach to the treatment of diet-induced obesity. This communication reports the discovery of a novel MCH-R1 receptor antagonist, the biarylether 7, identified through high throughput screening. The solid-phase synthesis and structure-activity relationship of related analogs is described.


Assuntos
Éteres/síntese química , Receptores do Hormônio Hipofisário/antagonistas & inibidores , Receptores de Somatostatina/antagonistas & inibidores , Técnicas de Química Combinatória , Avaliação Pré-Clínica de Medicamentos , Éteres/farmacologia , Humanos , Concentração Inibidora 50 , Obesidade/tratamento farmacológico , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...