Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Hum Genet ; 81(5): 884-94, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17924332

RESUMO

Autosomal dominant facioscapulohumeral muscular dystrophy (FSHD) is mainly characterized by progressive wasting and weakness of the facial, shoulder, and upper-arm muscles. FSHD is caused by contraction of the macrosatellite repeat D4Z4 on chromosome 4q35. The D4Z4 repeat is very polymorphic in length, and D4Z4 rearrangements occur almost exclusively via intrachromosomal gene conversions. Several disease mechanisms have been proposed, but none of these models can comprehensively explain FSHD, because repeat contraction alone is not sufficient to cause disease. Almost-identical D4Z4-repeat arrays have been identified on chromosome 10q26 and on two equally common chromosome 4 variants, 4qA and 4qB. Yet only repeat contractions of D4Z4 on chromosome 4qA cause FSHD; contractions on the other chromosomes are nonpathogenic. We hypothesized that allele-specific sequence differences among 4qA, 4qB, and 10q alleles underlie the 4qA specificity of FSHD. Sequence variations between these alleles have been described before, but the extent and significance of these variations proximal to, within, and distal to D4Z4 have not been studied in detail. We examined additional sequence variations in the FSHD locus, including a relatively stable simple sequence-length polymorphism proximal to D4Z4, a single-nucleotide polymorphism (SNP) within D4Z4, and the A/B variation distal to D4Z4. On the basis of these polymorphisms, we demonstrate that the subtelomeric domain of chromosome 4q can be subdivided into nine distinct haplotypes, of which three carry the distal 4qA variation. Interestingly, we show that repeat contractions in two of the nine haplotypes, one of which is a 4qA haplotype, are not associated with FSHD. We also show that each of these haplotypes has its unique sequence signature, and we propose that specific SNPs in the disease haplotype are essential for the development of FSHD.


Assuntos
Cromossomos Humanos Par 4/genética , Distrofia Muscular Facioescapuloumeral/genética , Mutação/genética , Alelos , Pareamento de Bases , Sequência de Bases , Estudos de Casos e Controles , Sequência Consenso , Feminino , Marcadores Genéticos , Haplótipos , Humanos , Masculino , Dados de Sequência Molecular , Linhagem , Sequências Repetitivas de Ácido Nucleico , Telômero/genética
2.
Carcinogenesis ; 24(1): 139-44, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12538359

RESUMO

We have shown previously that a wide range of mutagenic carcinogens are capable of inducing loss of heterozygosity (LOH) at the endogenous Aprt locus in mouse splenic lymphocytes. To investigate whether LOH might be caused by a single common mechanism, we set out to determine the extent of LOH by microsatellite analysis along (the Aprt gene containing) mouse chromosome 8. Aprt+/- hybrid B6C3F1 mice were treated with mutagens that induce different classes of DNA lesions, i.e. bulky DNA adducts, DNA methylation, DNA inter-strand crosslinks or DNA strand breaks. Aprt mutant frequencies (MF) in this C57Bl/6-C3H hybrid background were significantly reduced for mitomycin C (MMC) and methylmethanesulfonate (MMS) in comparison with MF in C57Bl/6 background, suggesting either enhanced repair or reduced formation of MMC- or MMS-induced mutagenic lesions in a hybrid B6C3F1 background. In contrast, Aprt MF after dimethylbenz[a]anthracene (DMBA), methylnitrosurea (MNU) and etoposide treatment were similar in both genetic backgrounds. Microsatellite analysis of Aprt mutant clones indicated a dominant role for mitotic recombination (MR) in generating spontaneous, DMBA- and etoposide-induced LOH at APRT: However, over 80% of the MMC-induced Aprt LOH mutants had lost heterozygosity for all markers tested, suggesting that either the crossover points were located close to the centromere or that these mutants arose by chromosome loss and duplication of the remaining chromosome 8. A substantial fraction (40%) of MNU-induced Aprt mutants had lost the wild-type Aprt allele, but had retained heterozygosity at all polymorphic markers tested at chromosome 8 indicating an important role for deletions in LOH formation by MNU. Patterns of MR differed quite dramatically for the various chemical mutagens tested, suggesting different mechanisms to be involved in inducing recombination between homologous chromosomes. In addition, non-random adduct formation and repair between chromosomal regions, i.e. heterochromatin versus euchromatin, may contribute to a non-random distribution of recombinational crossover points.


Assuntos
Carcinógenos/farmacologia , Perda de Heterozigosidade/genética , Mutagênese/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Adenina Fosforribosiltransferase/deficiência , Adenina Fosforribosiltransferase/genética , Animais , Troca Genética , Feminino , Marcadores Genéticos , Masculino , Camundongos , Camundongos Endogâmicos , Mutagênese/genética , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...