Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 206: 134-142, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37392950

RESUMO

Reactive Oxygen Species (ROS) in the form of H2O2 can act both as physiological signaling molecules as well as damaging agents, depending on their concentration and localization. The downstream biological effects of H2O2 were often studied making use of exogenously added H2O2, generally as a bolus and at supraphysiological levels. But this does not mimic the continuous, low levels of intracellular H2O2 production by for instance mitochondrial respiration. The enzyme d-Amino Acid Oxidase (DAAO) catalyzes H2O2 formation using d-amino acids, which are absent from culture media, as a substrate. Ectopic expression of DAAO has recently been used in several studies to produce inducible and titratable intracellular H2O2. However, a method to directly quantify the amount of H2O2 produced by DAAO has been lacking, making it difficult to assess whether observed phenotypes are the result of physiological or artificially high levels of H2O2. Here we describe a simple assay to directly quantify DAAO activity by measuring the oxygen consumed during H2O2 production. The oxygen consumption rate (OCR) of DAAO can directly be compared to the basal mitochondrial respiration in the same assay, to estimate whether the ensuing level of H2O2 production is within the range of physiological mitochondrial ROS production. In the tested monoclonal RPE1-hTERT cells, addition of 5 mM d-Ala to the culture media amounts to a DAAO-dependent OCR that surpasses ∼5% of the OCR that stems from basal mitochondrial respiration and hence produces supra-physiological levels of H2O2. We show that the assay can also be used to select clones that express differentially localized DAAO with the same absolute level of H2O2 production to be able to discriminate the effects of H2O2 production at different subcellular locations from differences in total oxidative burden. This method therefore greatly improves the interpretation and applicability of DAAO-based models, thereby moving the redox biology field forward.


Assuntos
Aminoácidos , Peróxido de Hidrogênio , Humanos , Peróxido de Hidrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Aminoácidos/metabolismo , Consumo de Oxigênio , Oxigênio
2.
Biochem J ; 469(2): 289-98, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25990325

RESUMO

Activity of FOXO (forkhead box O) transcription factors is inhibited by growth factor-PI3K (phosphoinositide 3-kinase)-PKB (protein kinase B)/Akt signalling to control a variety of cellular processes including cell cycle progression. Through comparative analysis of a number of microarray datasets we identified a set of genes commonly regulated by FOXO proteins and PI3K-PKB/Akt, which includes CTDSP2 (C-terminal domain small phosphatase 2). We validated CTDSP2 as a genuine FOXO target gene and show that ectopic CTDSP2 can induce cell cycle arrest. We analysed transcriptional regulation after CTDSP2 expression and identified extensive regulation of genes involved in cell cycle progression, which depends on the phosphatase activity of CTDSP2. The most notably regulated gene is the CDK (cyclin-dependent kinase) inhibitor p21(Cip1/Waf1) and in the present study we show that p21(Cip1/Waf1) is partially responsible for the cell cycle arrest through decreasing cyclin-CDK activity. Our data suggest that CTDSP2 induces p21(Cip1/Waf1) through increasing the activity of Ras. As has been described previously, Ras induces p21(Cip1/Waf1) through p53-dependent and p53-independent pathways and indeed both p53 and MEK inhibition can mitigate the CTDSP2-induced p21(Cip1/Waf1) mRNA up-regulation. In support of Ras activation by CTDSP2, depletion of endogenous CTDSP2 results in reduced Ras activity and thus CTDSP2 seems to be part of a larger set of genes regulated by FOXO proteins, which increase growth factor signalling upon FOXO activation.


Assuntos
Pontos de Checagem do Ciclo Celular/fisiologia , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas ras/metabolismo , Animais , Inibidor de Quinase Dependente de Ciclina p21/genética , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica/fisiologia , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Células NIH 3T3 , Proteínas Nucleares/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas Fosfatases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transcrição Gênica/fisiologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas ras/genética
3.
Mol Syst Biol ; 9: 638, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23340844

RESUMO

Forkhead box O (FOXO) transcription factors are key players in diverse cellular processes affecting tumorigenesis, stem cell maintenance and lifespan. To gain insight into the mechanisms of FOXO-regulated target gene expression, we studied genome-wide effects of FOXO3 activation. Profiling RNA polymerase II changes shows that FOXO3 regulates gene expression through transcription initiation. Correlative analysis of FOXO3 and RNA polymerase II ChIP-seq profiles demonstrates FOXO3 to act as a transcriptional activator. Furthermore, this analysis reveals a significant part of FOXO3 gene regulation proceeds through enhancer regions. FOXO3 binds to pre-existing enhancers and further activates these enhancers as shown by changes in histone acetylation and RNA polymerase II recruitment. In addition, FOXO3-mediated enhancer activation correlates with regulation of adjacent genes and pre-existence of chromatin loops between FOXO3 bound enhancers and target genes. Combined, our data elucidate how FOXOs regulate gene transcription and provide insight into mechanisms by which FOXOs can induce different gene expression programs depending on chromatin architecture.


Assuntos
Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , RNA Polimerase II/genética , Linhagem Celular , Cromatina/genética , Cromatina/ultraestrutura , Imunoprecipitação da Cromatina , Elementos Facilitadores Genéticos , Proteína Forkhead Box O3 , Perfilação da Expressão Gênica , Humanos , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo
4.
Nat Chem Biol ; 5(9): 664-72, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19648934

RESUMO

Cellular damage invoked by reactive oxygen species plays a key role in the pathobiology of cancer and aging. Forkhead box class O (FoxO) transcription factors are involved in various cellular processes including cell cycle regulation, apoptosis and resistance to reactive oxygen species, and studies in animal models have shown that these transcription factors are of vital importance in tumor suppression, stem cell maintenance and lifespan extension. Here we report that the activity of FoxO in human cells is directly regulated by the cellular redox state through a unique mechanism in signal transduction. We show that reactive oxygen species induce the formation of cysteine-thiol disulfide-dependent complexes of FoxO and the p300/CBP acetyltransferase, and that modulation of FoxO biological activity by p300/CBP-mediated acetylation is fully dependent on the formation of this redox-dependent complex. These findings directly link cellular redox status to the activity of the longevity protein FoxO.


Assuntos
Cisteína/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação , Animais , Proteínas de Ciclo Celular , Linhagem Celular , Sobrevivência Celular , Cisteína/genética , Fatores de Transcrição Forkhead , Humanos , Lisina/genética , Lisina/metabolismo , Camundongos , Mutação , Oxirredução , Peróxidos/farmacologia , Transdução de Sinais , Tiorredoxinas/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição de p300-CBP/genética
5.
Nat Cell Biol ; 8(10): 1064-73, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16964248

RESUMO

FOXO (Forkhead box O) transcription factors are important regulators of cellular metabolism, cell-cycle progression and cell death. FOXO activity is regulated by multiple post-translational modifications, including phosphorylation, acetylation and polyubiquitination. Here, we show that FOXO becomes monoubiquitinated in response to increased cellular oxidative stress, resulting in its re-localization to the nucleus and an increase in its transcriptional activity. Deubiquitination of FOXO requires the deubiquitinating enzyme USP7/HAUSP (herpesvirus-associated ubiquitin-specific protease), which interacts with and deubiquitinates FOXO in response to oxidative stress. Oxidative stress-induced ubiquitination and deubiquitination by USP7 do not influence FOXO protein half-life. However, USP7 does negatively regulate FOXO transcriptional activity towards endogenous promoters. Our results demonstrate a novel mechanism of FOXO regulation and indicate that USP7 has an important role in regulating FOXO-mediated stress responses.


Assuntos
Endopeptidases/metabolismo , Regulação da Expressão Gênica/fisiologia , Fatores de Transcrição/genética , Ubiquitina/metabolismo , Animais , Proteínas de Ciclo Celular , Células Cultivadas , Fatores de Transcrição Forkhead , Humanos , Peróxido de Hidrogênio/farmacologia , Rim/metabolismo , Neoplasias Pulmonares/metabolismo , Camundongos , Células NIH 3T3 , Oxidantes/farmacologia , Estresse Oxidativo , Processamento de Proteína Pós-Traducional , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Transfecção , Ubiquitina Tiolesterase , Peptidase 7 Específica de Ubiquitina , Proteases Específicas de Ubiquitina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...