Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Cell Biol ; 22(4): 498-511, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32203420

RESUMO

Rho GTPases are central regulators of the cytoskeleton and, in humans, are controlled by 145 multidomain guanine nucleotide exchange factors (RhoGEFs) and GTPase-activating proteins (RhoGAPs). How Rho signalling patterns are established in dynamic cell spaces to control cellular morphogenesis is unclear. Through a family-wide characterization of substrate specificities, interactomes and localization, we reveal at the systems level how RhoGEFs and RhoGAPs contextualize and spatiotemporally control Rho signalling. These proteins are widely autoinhibited to allow local regulation, form complexes to jointly coordinate their networks and provide positional information for signalling. RhoGAPs are more promiscuous than RhoGEFs to confine Rho activity gradients. Our resource enabled us to uncover a multi-RhoGEF complex downstream of G-protein-coupled receptors controlling CDC42-RHOA crosstalk. Moreover, we show that integrin adhesions spatially segregate GEFs and GAPs to shape RAC1 activity zones in response to mechanical cues. This mechanism controls the protrusion and contraction dynamics fundamental to cell motility. Our systems analysis of Rho regulators is key to revealing emergent organization principles of Rho signalling.


Assuntos
Citoesqueleto/genética , Proteínas Ativadoras de GTPase/genética , Integrinas/genética , Mecanotransdução Celular/genética , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Proteínas rac1 de Ligação ao GTP/genética , Animais , Células COS , Adesão Celular , Linhagem Celular , Movimento Celular , Chlorocebus aethiops , Biologia Computacional , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Cães , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Proteínas Ativadoras de GTPase/classificação , Proteínas Ativadoras de GTPase/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Integrinas/metabolismo , Células Madin Darby de Rim Canino , Camundongos , Pan troglodytes , Domínios Proteicos , Ratos , Fatores de Troca de Nucleotídeo Guanina Rho/classificação , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
2.
Small GTPases ; 10(3): 178-186, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-28521592

RESUMO

Much of our current knowledge of Rho GTPase networks and the regulation by Rho guanine exchange factors (Rho GEFs) and Rho GTPase activating proteins (Rho GAPs) is based on population-based techniques. Over the last decades, technologies that enable single cell analysis with high spatial and temporal resolution have revealed that Rho GTPase activity in cells is regulated on second timescales and at submicrometer length scales. Therefore, perturbation methods with matching spatial and temporal resolution are crucial to further our understanding of Rho GTPase signaling. Here, we give a brief overview of the components of Rho GTPase signaling networks and review a range of existing perturbation strategies that target a specific component of the Rho GTPase signaling module. The advantages and limitations of each perturbation method are discussed. Several recommendations are formulated to guide future studies aimed at addressing spatiotemporal aspects of Rho GEF and Rho GTPase signaling.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Transdução de Sinais/fisiologia , Proteínas Ativadoras de GTPase/genética , Humanos , Fatores de Troca de Nucleotídeo Guanina Rho/genética
4.
PLoS One ; 13(3): e0193705, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29505611

RESUMO

Förster Resonance Energy Transfer (FRET) provides a way to directly observe the activation of heterotrimeric G-proteins by G-protein coupled receptors (GPCRs). To this end, FRET based biosensors are made, employing heterotrimeric G-protein subunits tagged with fluorescent proteins. These FRET based biosensors complement existing, indirect, ways to observe GPCR activation. Here we report on the insertion of mTurquoise2 at several sites in the human Gα13 subunit, aiming to develop a FRET-based Gα13 activation biosensor. Three fluorescently tagged Gα13 variants were found to be functional based on i) plasma membrane localization and ii) ability to recruit p115-RhoGEF upon activation of the LPA2 receptor. The tagged Gα13 subunits were used as FRET donor and combined with cp173Venus fused to the Gγ2 subunit, as the acceptor. We constructed Gα13 biosensors by generating a single plasmid that produces Gα13-mTurquoise2, Gß1 and cp173Venus-Gγ2. The Gα13 activation biosensors showed a rapid and robust response when used in primary human endothelial cells that were exposed to thrombin, triggering endogenous protease activated receptors (PARs). This response was efficiently inhibited by the RGS domain of p115-RhoGEF and from the biosensor data we inferred that this is due to GAP activity. Finally, we demonstrated that the Gα13 sensor can be used to dissect heterotrimeric G-protein coupling efficiency in single living cells. We conclude that the Gα13 biosensor is a valuable tool for live-cell measurements that probe spatiotemporal aspects of Gα13 activation.


Assuntos
Técnicas Biossensoriais/métodos , Transferência Ressonante de Energia de Fluorescência , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/química , Proteínas Ativadoras de GTPase/metabolismo , Células HeLa , Humanos , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Receptores Acoplados a Proteínas G/metabolismo , Análise de Célula Única
5.
Sci Rep ; 6: 36825, 2016 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-27833100

RESUMO

Rho GTPases are master regulators of the eukaryotic cytoskeleton. The activation of Rho GTPases is governed by Rho guanine nucleotide exchange factors (GEFs). Three RhoGEF isoforms are produced by the gene ARHGEF25; p63RhoGEF580, GEFT and a recently discovered longer isoform of 619 amino acids (p63RhoGEF619). The subcellular distribution of p63RhoGEF580 and p63RhoGEF619 is strikingly different in unstimulated cells, p63RhoGEF580 is located at the plasma membrane and p63RhoGEF619 is confined to the cytoplasm. Interestingly, we find that both P63RhoGEF580 and p63RhoGEF619 activate RhoGTPases to a similar extent after stimulation of Gαq coupled GPCRs. Furthermore, we show that p63RhoGEF619 relocates to the plasma membrane upon activation of Gαq coupled GPCRs, resembling the well-known activation mechanism of RhoGEFs activated by Gα12/13. Synthetic recruitment of p63RhoGEF619 to the plasma membrane increases RhoGEF activity towards RhoA, but full activation requires allosteric activation via Gαq. Together, these findings reveal a dual role for Gαq in RhoGEF activation, as it both recruits and allosterically activates cytosolic ARHGEF25 isoforms.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/fisiologia , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Membrana Celular/metabolismo , Células HeLa , Humanos , Cinética , Isoformas de Proteínas/metabolismo , Transporte Proteico , Transdução de Sinais
6.
Mol Pharmacol ; 90(3): 162-76, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27358232

RESUMO

Genetically encoded biosensors based on Förster resonance energy transfer (FRET) can visualize responses of individual cells in real time. Here, we evaluated whether FRET-based biosensors provide sufficient contrast and specificity to measure activity of G-protein-coupled receptors. The four histamine receptor subtypes (H1R, H2R, H3R, and H4R) respond to the ligand histamine by activating three canonical heterotrimeric G-protein-mediated signaling pathways with a reported high degree of specificity. Using FRET-based biosensors, we demonstrate that H1R activates Gαq. We also observed that H1R activates Gαi, albeit at a 10-fold lower potency. In addition to increasing cAMP levels, most likely via Gαs, we found that the H2R induces Gαq-mediated calcium release. The H3R and H4R activated Gαi with high specificity and a high potency. We demonstrate that a number of FRET sensors provide sufficient contrast to: 1) analyze the specificity of the histamine receptor subtypes for different heterotrimeric G-protein families with single-cell resolution, 2) probe for antagonist specificity, and 3) allow the measurement of single-cell concentration-response curves.


Assuntos
Receptores Histamínicos/metabolismo , Transdução de Sinais , Análise de Célula Única/métodos , Técnicas Biossensoriais , Sinalização do Cálcio , AMP Cíclico/metabolismo , Transferência Ressonante de Energia de Fluorescência , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Células HeLa , Humanos , Proteínas Luminescentes/metabolismo , Modelos Biológicos , Proteína rhoA de Ligação ao GTP/metabolismo
7.
Nat Commun ; 7: 10493, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26814335

RESUMO

During immune surveillance and inflammation, leukocytes exit the vasculature through transient openings in the endothelium without causing plasma leakage. However, the exact mechanisms behind this intriguing phenomenon are still unknown. Here we report that maintenance of endothelial barrier integrity during leukocyte diapedesis requires local endothelial RhoA cycling. Endothelial RhoA depletion in vitro or Rho inhibition in vivo provokes neutrophil-induced vascular leakage that manifests during the physical movement of neutrophils through the endothelial layer. Local RhoA activation initiates the formation of contractile F-actin structures that surround emigrating neutrophils. These structures that surround neutrophil-induced endothelial pores prevent plasma leakage through actomyosin-based pore confinement. Mechanistically, we found that the initiation of RhoA activity involves ICAM-1 and the Rho GEFs Ect2 and LARG. In addition, regulation of actomyosin-based endothelial pore confinement involves ROCK2b, but not ROCK1. Thus, endothelial cells assemble RhoA-controlled contractile F-actin structures around endothelial pores that prevent vascular leakage during leukocyte extravasation.


Assuntos
Actinas/metabolismo , Endotélio Vascular/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Leucócitos/citologia , Transdução de Sinais , Migração Transendotelial e Transepitelial , Proteína rhoA de Ligação ao GTP/metabolismo , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Actinas/genética , Animais , Permeabilidade Capilar , Células Cultivadas , Endotélio Vascular/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Molécula 1 de Adesão Intercelular , Leucócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/citologia , Neutrófilos/metabolismo , Proteína rhoA de Ligação ao GTP/genética
8.
PLoS One ; 11(1): e0146789, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26799488

RESUMO

G-protein coupled receptors (GPCRs) can activate a heterotrimeric G-protein complex with subsecond kinetics. Genetically encoded biosensors based on Förster resonance energy transfer (FRET) are ideally suited for the study of such fast signaling events in single living cells. Here we report on the construction and characterization of three FRET biosensors for the measurement of Gαi1, Gαi2 and Gαi3 activation. To enable quantitative long-term imaging of FRET biosensors with high dynamic range, fluorescent proteins with enhanced photophysical properties are required. Therefore, we use the currently brightest and most photostable CFP variant, mTurquoise2, as donor fused to Gαi subunit, and cp173Venus fused to the Gγ2 subunit as acceptor. The Gαi FRET biosensors constructs are expressed together with Gß1 from a single plasmid, providing preferred relative expression levels with reduced variation in mammalian cells. The Gαi FRET sensors showed a robust response to activation of endogenous or over-expressed alpha-2A-adrenergic receptors, which was inhibited by pertussis toxin. Moreover, we observed activation of the Gαi FRET sensor in single cells upon stimulation of several GPCRs, including the LPA2, M3 and BK2 receptor. Furthermore, we show that the sensors are well suited to extract kinetic parameters from fast measurements in the millisecond time range. This new generation of FRET biosensors for Gαi1, Gαi2 and Gαi3 activation will be valuable for live-cell measurements that probe Gαi activation.


Assuntos
Técnicas Biossensoriais/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Linhagem Celular Tumoral , Ativação Enzimática/fisiologia , Células HEK293 , Células HeLa , Células Endoteliais da Veia Umbilical Humana , Humanos , Toxina Pertussis/farmacologia , Receptor Muscarínico M3/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo
9.
Sci Rep ; 5: 14693, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26435194

RESUMO

The small GTPase RhoA is involved in cell morphology and migration. RhoA activity is tightly regulated in time and space and depends on guanine exchange factors (GEFs). However, the kinetics and subcellular localization of GEF activity towards RhoA are poorly defined. To study the mechanism underlying the spatiotemporal control of RhoA activity by GEFs, we performed single cell imaging with an improved FRET sensor reporting on the nucleotide loading state of RhoA. By employing the FRET sensor we show that a plasma membrane located RhoGEF, p63RhoGEF, can rapidly activate RhoA through endogenous GPCRs and that localized RhoA activity at the cell periphery correlates with actin polymerization. Moreover, synthetic recruitment of the catalytic domain derived from p63RhoGEF to the plasma membrane, but not to the Golgi apparatus, is sufficient to activate RhoA. The synthetic system enables local activation of endogenous RhoA and effectively induces actin polymerization and changes in cellular morphology. Together, our data demonstrate that GEF activity at the plasma membrane is sufficient for actin polymerization via local RhoA signaling.


Assuntos
Actinas/metabolismo , Membrana Celular/enzimologia , Proteína rhoA de Ligação ao GTP/fisiologia , Núcleo Celular , Ativação Enzimática , Células HeLa , Humanos , Multimerização Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Fatores de Troca de Nucleotídeo Guanina Rho , Fatores de Transcrição/metabolismo
11.
J Cell Sci ; 128(16): 3041-54, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26116572

RESUMO

Endothelial cell-cell junctions maintain a restrictive barrier that is tightly regulated to allow dynamic responses to permeability-inducing angiogenic factors, as well as to inflammatory agents and adherent leukocytes. The ability of these stimuli to transiently remodel adherens junctions depends on Rho-GTPase-controlled cytoskeletal rearrangements. How the activity of Rho-GTPases is spatio-temporally controlled at endothelial adherens junctions by guanine-nucleotide exchange factors (GEFs) is incompletely understood. Here, we identify a crucial role for the Rho-GEF Trio in stabilizing junctions based around vascular endothelial (VE)-cadherin (also known as CDH5). Trio interacts with VE-cadherin and locally activates Rac1 at adherens junctions during the formation of nascent contacts, as assessed using a novel FRET-based Rac1 biosensor and biochemical assays. The Rac-GEF domain of Trio is responsible for the remodeling of junctional actin from radial into cortical actin bundles, a crucial step for junction stabilization. This promotes the formation of linear adherens junctions and increases endothelial monolayer resistance. Collectively, our data show the importance of spatio-temporal regulation of the actin cytoskeleton through Trio and Rac1 at VE-cadherin-based cell-cell junctions in the maintenance of the endothelial barrier.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Junções Intercelulares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Antígenos CD/genética , Caderinas/genética , Permeabilidade Capilar/genética , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Junções Intercelulares/genética , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/genética , Proteínas rac1 de Ligação ao GTP/genética
12.
Mol Pharmacol ; 88(3): 589-95, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25972446

RESUMO

The last frontier for a complete understanding of G-protein-coupled receptor (GPCR) biology is to be able to assess GPCR activity, interactions, and signaling in vivo, in real time within biologically intact systems. This includes the ability to detect GPCR activity, trafficking, dimerization, protein-protein interactions, second messenger production, and downstream signaling events with high spatial resolution and fast kinetic readouts. Resonance energy transfer (RET)-based biosensors allow for all of these possibilities in vitro and in cell-based assays, but moving RET into intact animals has proven difficult. Here, we provide perspectives on the optimization of biosensor design, of signal detection in living organisms, and the multidisciplinary development of in vitro and cell-based assays that more appropriately reflect the physiologic situation. In short, further development of RET-based probes, optical microscopy techniques, and mouse genome editing hold great potential over the next decade to bring real-time in vivo GPCR imaging to the forefront of pharmacology.


Assuntos
Técnicas Biossensoriais/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Animais , Técnicas Biossensoriais/tendências
13.
Sci Rep ; 3: 2284, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23884432

RESUMO

The p63RhoGEF and GEFT proteins are encoded by the same gene and both members of the Dbl family of guanine nucleotide exchange factors. These proteins can be activated by the heterotrimeric G-protein subunit Gαq. We show that p63RhoGEF is located at the plasma membrane, whereas GEFT is confined to the cytoplasm. Live-cell imaging studies yielded quantitative information on diffusion coefficients, association rates and encounter times of GEFT and p63RhoGEF. Calcium signaling was examined as a measure of the signal transmission, revealing more efficient signaling through the membrane-associated p63RhoGEF. A rapamycin dependent recruitment system was used to dynamically alter the subcellular location and concentration of GEFT, showing efficient signaling through GEFT only upon membrane recruitment. Together, our results show efficient signal transmission through membrane located effectors, and highlight a role for increased concentration rather than increased encounter times due to membrane localization in the Gαq mediated pathways to p63RhoGEF and PLCß.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Sinalização do Cálcio , Membrana Celular/metabolismo , Cisteína/química , Citoplasma/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Expressão Gênica , Ontologia Genética , Vetores Genéticos/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Células HeLa , Humanos , Espaço Intracelular/metabolismo , Cinética , Microscopia Confocal , Modelos Biológicos , Dados de Sequência Molecular , Fosfolipase C beta/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Fatores de Troca de Nucleotídeo Guanina Rho/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...