Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cheminform ; 7: 1, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25705261

RESUMO

Cyclooxygenases (COX) are present in the body in two isoforms, namely: COX-1, constitutively expressed, and COX-2, induced in physiopathological conditions such as cancer or chronic inflammation. The inhibition of COX with non-steroideal anti-inflammatory drugs (NSAIDs) is the most widely used treatment for chronic inflammation despite the adverse effects associated to prolonged NSAIDs intake. Although selective COX-2 inhibition has been shown not to palliate all adverse effects (e.g. cardiotoxicity), there are still niche populations which can benefit from selective COX-2 inhibition. Thus, capitalizing on bioactivity data from both isoforms simultaneously would contribute to develop COX inhibitors with better safety profiles. We applied ensemble proteochemometric modeling (PCM) for the prediction of the potency of 3,228 distinct COX inhibitors on 11 mammalian cyclooxygenases. Ensemble PCM models ([Formula: see text], and RMSEtest = 0.71) outperformed models exclusively trained on compound ([Formula: see text], and RMSEtest = 1.09) or protein descriptors ([Formula: see text] and RMSEtest = 1.10) on the test set. Moreover, PCM predicted COX potency for 1,086 selective and non-selective COX inhibitors with [Formula: see text] and RMSEtest = 0.76. These values are in agreement with the maximum and minimum achievable [Formula: see text] and RMSEtest values of approximately 0.68 for both metrics. Confidence intervals for individual predictions were calculated from the standard deviation of the predictions from the individual models composing the ensembles. Finally, two substructure analysis pipelines singled out chemical substructures implicated in both potency and selectivity in agreement with the literature. Graphical AbstractPrediction of uncorrelated bioactivity profiles for mammalian COX inhibitors with Ensemble Proteochemometric Modeling.

2.
J Cheminform ; 6(1): 40, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25221627

RESUMO

BACKGROUND: The large increase in the number of scientific publications has fuelled a need for semi- and fully automated text mining approaches in order to assist in the triage process, both for individual scientists and also for larger-scale data extraction and curation into public databases. Here, we introduce a document classifier, which is able to successfully distinguish between publications that are 'ChEMBL-like' (i.e. related to small molecule drug discovery and likely to contain quantitative bioactivity data) and those that are not. The unprecedented size of the medicinal chemistry literature collection, coupled with the advantage of manual curation and mapping to chemistry and biology make the ChEMBL corpus a unique resource for text mining. RESULTS: The method has been implemented as a data protocol/workflow for both Pipeline Pilot (version 8.5) and KNIME (version 2.9) respectively. Both workflows and models are freely available at: ftp://ftp.ebi.ac.uk/pub/databases/chembl/text-mining. These can be readily modified to include additional keyword constraints to further focus searches. CONCLUSIONS: Large-scale machine learning document classification was shown to be very robust and flexible for this particular application, as illustrated in four distinct text-mining-based use cases. The models are readily available on two data workflow platforms, which we believe will allow the majority of the scientific community to apply them to their own data. ᅟ: Graphical AbstractMultidimensional scaling analysis applied to document vectors derived from titles and abstracts in different corpora. Notably, there is large overlap between the documents in the different ChEMBL versions and BindingDB, while the background MEDLINE set is largely divergent.

3.
J Cheminform ; 6: 35, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25045403

RESUMO

Proteochemometrics (PCM) is an approach for bioactivity predictive modeling which models the relationship between protein and chemical information. Gaussian Processes (GP), based on Bayesian inference, provide the most objective estimation of the uncertainty of the predictions, thus permitting the evaluation of the applicability domain (AD) of the model. Furthermore, the experimental error on bioactivity measurements can be used as input for this probabilistic model. In this study, we apply GP implemented with a panel of kernels on three various (and multispecies) PCM datasets. The first dataset consisted of information from 8 human and rat adenosine receptors with 10,999 small molecule ligands and their binding affinity. The second consisted of the catalytic activity of four dengue virus NS3 proteases on 56 small peptides. Finally, we have gathered bioactivity information of small molecule ligands on 91 aminergic GPCRs from 9 different species, leading to a dataset of 24,593 datapoints with a matrix completeness of only 2.43%. GP models trained on these datasets are statistically sound, at the same level of statistical significance as Support Vector Machines (SVM), with [Formula: see text] values on the external dataset ranging from 0.68 to 0.92, and RMSEP values close to the experimental error. Furthermore, the best GP models obtained with the normalized polynomial and radial kernels provide intervals of confidence for the predictions in agreement with the cumulative Gaussian distribution. GP models were also interpreted on the basis of individual targets and of ligand descriptors. In the dengue dataset, the model interpretation in terms of the amino-acid positions in the tetra-peptide ligands gave biologically meaningful results.

4.
J Cheminform ; 5(1): 41, 2013 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-24059694

RESUMO

BACKGROUND: While a large body of work exists on comparing and benchmarking of descriptors of molecular structures, a similar comparison of protein descriptor sets is lacking. Hence, in the current work a total of 13 different protein descriptor sets have been compared with respect to their behavior in perceiving similarities between amino acids. The descriptor sets included in the study are Z-scales (3 variants), VHSE, T-scales, ST-scales, MS-WHIM, FASGAI and BLOSUM, and a novel protein descriptor set termed ProtFP (4 variants). We investigate to which extent descriptor sets show collinear as well as orthogonal behavior via principal component analysis (PCA). RESULTS: In describing amino acid similarities, MSWHIM, T-scales and ST-scales show related behavior, as do the VHSE, FASGAI, and ProtFP (PCA3) descriptor sets. Conversely, the ProtFP (PCA5), ProtFP (PCA8), Z-Scales (Binned), and BLOSUM descriptor sets show behavior that is distinct from one another as well as both of the clusters above. Generally, the use of more principal components (>3 per amino acid, per descriptor) leads to a significant differences in the way amino acids are described, despite that the later principal components capture less variation per component of the original input data. CONCLUSION: In this work a comparison is provided of how similar (and differently) currently available amino acids descriptor sets behave when converting structure to property space. The results obtained enable molecular modelers to select suitable amino acid descriptor sets for structure-activity analyses, e.g. those showing complementary behavior.

5.
J Cheminform ; 5(1): 42, 2013 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-24059743

RESUMO

BACKGROUND: While a large body of work exists on comparing and benchmarking descriptors of molecular structures, a similar comparison of protein descriptor sets is lacking. Hence, in the current work a total of 13 amino acid descriptor sets have been benchmarked with respect to their ability of establishing bioactivity models. The descriptor sets included in the study are Z-scales (3 variants), VHSE, T-scales, ST-scales, MS-WHIM, FASGAI, BLOSUM, a novel protein descriptor set (termed ProtFP (4 variants)), and in addition we created and benchmarked three pairs of descriptor combinations. Prediction performance was evaluated in seven structure-activity benchmarks which comprise Angiotensin Converting Enzyme (ACE) dipeptidic inhibitor data, and three proteochemometric data sets, namely (1) GPCR ligands modeled against a GPCR panel, (2) enzyme inhibitors (NNRTIs) with associated bioactivities against a set of HIV enzyme mutants, and (3) enzyme inhibitors (PIs) with associated bioactivities on a large set of HIV enzyme mutants. RESULTS: The amino acid descriptor sets compared here show similar performance (<0.1 log units RMSE difference and <0.1 difference in MCC), while errors for individual proteins were in some cases found to be larger than those resulting from descriptor set differences ( > 0.3 log units RMSE difference and >0.7 difference in MCC). Combining different descriptor sets generally leads to better modeling performance than utilizing individual sets. The best performers were Z-scales (3) combined with ProtFP (Feature), or Z-Scales (3) combined with an average Z-Scale value for each target, while ProtFP (PCA8), ST-Scales, and ProtFP (Feature) rank last. CONCLUSIONS: While amino acid descriptor sets capture different aspects of amino acids their ability to be used for bioactivity modeling is still - on average - surprisingly similar. Still, combining sets describing complementary information consistently leads to small but consistent improvement in modeling performance (average MCC 0.01 better, average RMSE 0.01 log units lower). Finally, performance differences exist between the targets compared thereby underlining that choosing an appropriate descriptor set is of fundamental for bioactivity modeling, both from the ligand- as well as the protein side.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...