Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Geophys Res Planets ; 123(2): 612-629, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29938148

RESUMO

Moon Mineralogy Mapper (M3) spectroscopic data and high-resolution imagery data sets were used to study the mineralogy and geology of the 207 km diameter Humboldt crater. Analyses of M3 data, using a custom-made method for M3 spectra continuum removal and spectral parameters calculation, reveal multiple pure crystalline plagioclase detections within the Humboldt crater central peak complex, hinting at its crustal origin. However, olivine, spinel, and glass are observed in the crater walls and rims, suggesting these minerals derive from shallower levels than the plagioclase of the central peak complex. High-calcium pyroxenes are detected in association with volcanic deposits emplaced on the crater's floor. Geologic mapping was performed, and the age of Humboldt crater's units was estimated from crater counts. Results suggest that volcanic activity within this floor-fractured crater spanned over a billion years. The felsic mineralogy of the central peak complex region, which presumably excavated deeper material, and the shallow mafic minerals (olivine and spinel) detected in Humboldt crater walls and rim are not in accordance with the general view of the structure of the lunar crust. Our observations can be explained by the presence of a mafic pluton emplaced in the anorthositic crust prior to the Humboldt-forming impact event. Alternatively, the excavation of Australe basin ejecta could explain the observed mineralogical detections. This highlights the importance of detailed combined mineralogical and geological remote sensing studies to assess the heterogeneity of the lunar crust.

2.
Sci Rep ; 8(1): 7053, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29728585

RESUMO

The depletions of potassium (K) and sodium (Na) in samples from planetary interiors have long been considered as primary evidence for their volatile behavior during planetary formation processes. Here, we use high-pressure experiments combined with laser ablation analyses to measure the sulfide-silicate and metal-silicate partitioning of K and Na at high pressure (P) - temperature (T) and find that their partitioning into metal strongly increases with temperature. Results indicate that the observed Vestan and Martian mantle K and Na depletions can reflect sequestration into their sulfur-rich cores in addition to their volatility during formation of Mars and Vesta. This suggests that alkali depletions are not affected solely by incomplete condensation or partial volatilization during planetary formation and differentiation, but additionally or even primarily reflect the thermal and chemical conditions during core formation. Core sequestration is also significant for the Moon, but lunar mantle depletions of K and Na cannot be reconciled by core formation only. This supports the hypothesis that measured isotopic fractionations of K in lunar samples represent incomplete condensation or extensive volatile loss during the Moon-forming giant impact.

3.
EPJ Tech Instrum ; 5(1): 5, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30997319

RESUMO

This paper presents the setup and pressure calibration of an 800-ton multi-anvil apparatus installed at the Vrije Universiteit (Amsterdam, the Netherlands) to simulate pressure-temperature conditions in planetary interiors. This high-pressure device can expose cubic millimeter sized samples to near-hydrostatic pressures up to ~ 10 GPa and temperatures exceeding 2100 °C. The apparatus is part of the Distributed Planetary Simulation Facility (DPSF) of the EU Europlanet 2020 Research Infrastructure, and significantly extends the pressure-temperature range that is available through international access to this facility.

4.
J Geophys Res Planets ; 123(12): 3220-3237, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31007994

RESUMO

Moon Mineralogy Mapper spectroscopic data were used to investigate the mineralogy of a selection of impact craters' central peaks or peak rings, in order to characterize the lunar crust-mantle interface, and assess its lateral and vertical heterogeneity. The depth of origin of the craters' central peaks or peak rings was calculated using empirical equations, and compared to Gravity Recovery and Interior Laboratory crustal thickness models to select craters tapping within +10/-20 km of the crust-mantle interface. Our results show that plagioclase is widely detected, including in craters allegedly sampling lower crustal to mantle material, except in central peaks where Low-Calcium Pyroxene was detected. Olivine detections are scarce, and identified in material assumed to be derived from both above and below the crust-mantle interface. Mineralogical detections in central peaks show that there is an evolution of the pyroxene composition with depth, that may correspond to the transition from the crust to the mantle. The correlation between High-Calcium Pyroxene and some pyroxene-dominated mixture spectra with the location of maria and cryptomaria hints at the existence of lateral heterogeneities as deep as the crust-mantle interface.

5.
Chem Commun (Camb) ; (6): 786-7, 2003 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-12703823

RESUMO

Atomistic simulations suggest trace elements are more soluble in a 50:50 pyrope (Mg3Al2Si3O12)-grossular (Ca3Al2Si3O12) garnet mixture than in either end-member; consistent with partitioning experiments, and, contrary to Goldschmidt's first rule, large trace element cations may substitute for Mg2+, small trace elements for Ca2+.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...