Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JBMR Plus ; 3(11): e10230, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31768489

RESUMO

Fibrodysplasia ossificans progressiva (FOP) is an extremely rare congenital form of heterotopic ossification (HO), caused by heterozygous mutations in the activin A type I receptor (ACVR1), that encodes the bone morphogenetic protein (BMP) type I receptor ALK2. These mutations enable ALK2 to induce downstream signaling in response to activins, thereby turning them into bone-inducing agents. To date, there is no cure for FOP. The further development of FOP patient-derived models may contribute to the discovery of novel biomarkers and therapeutic approaches. Nevertheless, this has traditionally been a challenge, as biopsy sampling often triggers HO. We have characterized peripheral blood-derived endothelial colony-forming cells (ECFCs) from three independent FOP donors as a new model for FOP. FOP ECFCs are prone to undergo endothelial-to-mesenchymal transition and exhibit increased ALK2 downstream signaling and subsequent osteogenic differentiation upon stimulation with activin A. Moreover, we have identified a new class of small molecule macrocycles with potential activity against ALK2 kinase. Finally, using FOP ECFCs, we have selected OD36 and OD52 as potent inhibitors with excellent kinase selectivity profiles that potently antagonize mutant ALK2 signaling and osteogenic differentiation. We expect that these results will contribute to the development of novel ALK2 clinical candidates for the treatment of FOP. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

2.
Front Med (Lausanne) ; 5: 356, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619865

RESUMO

Vascular homeostasis and regeneration in ischemic tissue relies on intrinsic competence of the tissue to rapidly recruit endothelial cells for vascularization. The mononuclear cell (MNC) fraction of blood contains circulating progenitors committed to endothelial lineage. These progenitors give rise to endothelial colony-forming cells (ECFCs) that actively participate in neovascularization of ischemic tissue. To evaluate if the initial clonal outgrowth of ECFCs from cord (CB) and peripheral blood (PB) was stimulated by hypoxic conditions, MNCs obtained from CB and PB were subjected to 20 and 1% O2 cell culture conditions. Clonal outgrowth was followed during a 30 day incubation period. Hypoxia impaired the initial outgrowth of ECFC colonies from CB and also reduced their number that were developing from PB MNCs. Three days of oxygenation (20% O2) prior to hypoxia could overcome the initial CB-ECFC outgrowth. Once proliferating and subcultured the CB-ECFCs growth was only modestly affected by hypoxia; proliferation of PB-ECFCs was reduced to a similar extent (18-30% reduction). Early passages of subcultured CB- and PB-ECFCs contained only viable cells and few if any senescent cells. Tube formation by subcultured PB-ECFCs was also markedly inhibited by continuous exposure to 1% O2. Gene expression profiles point to regulation of the cell cycle and metabolism as major altered gene clusters. Finally we discuss our counterintuitive observations in the context of the important role that hypoxia has in promoting neovascularization.

3.
Intensive Care Med Exp ; 5(1): 22, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28409476

RESUMO

BACKGROUND: Hyperoxia, an arterial oxygen pressure of more than 100 mmHg or 13% O2, frequently occurs in hospitalized patients due to administration of supplemental oxygen. Increasing evidence suggests that hyperoxia induces vasoconstriction in the systemic (micro)circulation, potentially affecting organ perfusion. This study addresses effects of hyperoxia on viability, proliferative capacity, and on pathways affecting vascular tone in cultured human microvascular endothelial cells (hMVEC). METHODS: hMVEC of the systemic circulation were exposed to graded oxygen fractions of 20, 30, 50, and 95% O2 for 8, 24, and 72 h. These fractions correspond to 152, 228, 380, and 722 mmHg, respectively. Cell proliferation and viability was measured via a proliferation assay, peroxynitrite formation via anti-nitrotyrosine levels, endothelial nitric oxide synthase (eNOS), and endothelin-1 (ET-1) levels via q-PCR and western blot analysis. RESULTS: Exposing hMVEC to 50 and 95% O2 for more than 24 h impaired cell viability and proliferation. Hyperoxia did not significantly affect nitrotyrosine levels, nor eNOS mRNA and protein levels, regardless of the exposure time or oxygen concentration used. Phosphorylation of eNOS at the serine 1177 (S1177) residue and ET-1 mRNA levels were also not significantly affected. CONCLUSIONS: Exposure of isolated human microvascular endothelial cells to marked hyperoxia for more than 24 h decreases cell viability and proliferation. Our results do not support a role of eNOS mRNA and protein or ET-1 mRNA in the potential vasoconstrictive effects of hyperoxia on isolated hMVEC.

4.
Angiogenesis ; 19(3): 325-38, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27043316

RESUMO

Endothelial colony-forming cells (ECFC) are grown from circulating CD34(+) progenitors present in adult peripheral blood, but during in vitro expansion part of the cells lose CD34. To evaluate whether the regulation of CD34 characterizes the angiogenic phenotypical features of PB-ECFCs, we investigated the properties of CD34(+) and CD34(-) ECFCs with respect to their ability to form capillary-like tubes in 3D fibrin matrices, tip-cell gene expression, and barrier integrity. Selection of CD34(+) and CD34(-) ECFCs from subcultured ECFCs was accomplished by magnetic sorting (FACS: CD34(+): 95 % pos; CD34(-): 99 % neg). Both fractions proliferated at same rate, while CD34(+) ECFCs exhibited higher tube-forming capacity and tip-cell gene expression than CD3(4-) cells. However, during cell culture CD34(-) cells re-expressed CD34. Cell-seeding density, cell-cell contact formation, and serum supplements modulated CD34 expression. CD34 expression in ECFCs was strongly suppressed by newborn calf serum. Stimulation with FGF-2, VEGF, or HGF prepared in medium supplemented with 3 % albumin did not change CD34 mRNA or surface expression. Silencing of CD34 with siRNA resulted in strengthening of cell-cell contacts and increased barrier function of ECFC monolayers as measured by ECIS. Furthermore, CD34 siRNA reduced tube formation by ECFC, but did not affect tip-cell gene expression. These findings demonstrate that CD34(+) and CD34(-) cells are different phenotypes of similar cells and that CD34 (1) can be regulated in ECFC; (2) is positively involved in capillary-like sprout formation; (3) is associated but not causally related to tip-cell gene expression; and (4) can affect endothelial barrier function.


Assuntos
Células-Tronco Adultas/citologia , Células-Tronco Adultas/imunologia , Antígenos CD34/metabolismo , Células Endoteliais/citologia , Células Endoteliais/imunologia , Células-Tronco Adultas/metabolismo , Animais , Antígenos CD34/genética , Vasos Sanguíneos/citologia , Vasos Sanguíneos/crescimento & desenvolvimento , Vasos Sanguíneos/imunologia , Bovinos , Contagem de Células , Proliferação de Células , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias , Meios de Cultura , Células Endoteliais/metabolismo , Expressão Gênica , Humanos , Neovascularização Fisiológica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética
5.
Am J Physiol Heart Circ Physiol ; 309(10): H1667-78, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26432845

RESUMO

Circulating angiogenic cells (CACs) are monocyte-derived cells with endothelial characteristics, which contribute to both angiogenesis and arteriogenesis in a paracrine way. Interferon-ß (IFN-ß) is known to inhibit these divergent processes in animals and patients. We hypothesized that IFN-ß might act by affecting the differentiation and function of CACs. CACs were cultured from peripheral blood mononuclear cells and phenotypically characterized by surface expression of monocytic and endothelial markers. IFN-ß significantly reduced the number of CACs by 18-64%. Apoptosis was not induced by IFN-ß, neither in mononuclear cells during differentiation, nor after maturation to CACs. Rather, IFN-ß impaired adhesion to, and spreading on, fibronectin, which was dependent on α5ß1 (VLA-5)-integrin. IFN-ß affected the function of VLA-5 in mature CACs, leading to rounding and detachment of cells, by induction of calpain 1 activity. Cell rounding and detachment was completely reversed by inhibition of calpain 1 activity in mature CACs. During in vitro capillary formation, CAC addition and calpain 1 inhibition enhanced sprouting of endothelial cells to a comparable extent, but were not sufficient to rescue tube formation in the presence of IFN-ß. We show that the IFN-ß-induced reduction of the numbers of in vitro differentiated CACs is based on activation of calpain 1, resulting in an attenuated adhesion to extracellular matrix proteins via VLA-5. In vivo, this could lead to inhibition of vessel formation due to reduction of the locally recruited CAC numbers and their paracrine angiogenic factors.


Assuntos
Calpaína/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Interferon beta/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Calpaína/metabolismo , Células Cultivadas , Células Endoteliais/metabolismo , Fibronectinas , Humanos , Técnicas In Vitro , Integrina alfa5beta1/efeitos dos fármacos , Integrina alfa5beta1/metabolismo , Leucócitos Mononucleares/metabolismo , Neovascularização Fisiológica/fisiologia
6.
PLoS One ; 10(6): e0129935, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26076450

RESUMO

INTRODUCTION: Efficient implementation of peripheral blood-derived endothelial-colony cells (PB-ECFCs) as a therapeutical tool requires isolation and generation of a sufficient number of cells in ex vivo conditions devoid of animal-derived products. At present, little is known how the isolation and expansion procedure in xenogeneic-free conditions affects the therapeutical capacity of PB-ECFCs. RESULTS: The findings presented in this study indicate that human platelet lysate (PL) as a serum substitute yields twice more colonies per mL blood compared to the conventional isolation with fetal bovine serum (FBS). Isolated ECFCs displayed a higher proliferative ability in PL supplemented medium than cells in FBS medium during 30 days expansion. The cells at 18 cumulative population doubling levels (CPDL) retained their proliferative capacity, showed higher sprouting ability in fibrin matrices upon stimulation with FGF-2 and VEGF-A than the cells at 6 CPDL, and displayed low ß-galactosidase activity. The increased sprouting of PB-ECFCs at 18 CPDL was accompanied by an intrinsic activation of the uPA/uPAR fibrinolytic system. Induced deficiency of uPA (urokinase-type plasminogen activator) or uPAR (uPA receptor) by siRNA technology completely abolished the angiogenic ability of PB-ECFCs in fibrin matrices. During the serial expansion, the gene induction of the markers associated with inflammatory activation such as VCAM-1 and ICAM-1 did not occur or only to limited extent. While further propagation up to 31 CPDL proceeded at a comparable rate, a marked upregulation of inflammatory markers occurred in all donors accompanied by a further increase of uPA/uPAR gene induction. The observed induction of inflammatory genes at later stages of long-term propagation of PB-ECFCs underpins the necessity to determine the right time-point for harvesting of sufficient number of cells with preserved therapeutical potential. CONCLUSION: The presented isolation method and subsequent cell expansion in platelet lysate supplemented culture medium permits suitable large-scale propagation of PB-ECFC. For optimal use of PB-ECFCs in clinical settings, our data suggest that 15-20 CPDL is the most adequate maturation stage.


Assuntos
Plaquetas/metabolismo , Células Progenitoras Endoteliais/citologia , Células Progenitoras Endoteliais/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Adulto , Biomarcadores , Técnicas de Cultura de Células , Proliferação de Células , Autorrenovação Celular , Células Progenitoras Endoteliais/metabolismo , Feminino , Fibrina/metabolismo , Humanos , Imunofenotipagem , Mediadores da Inflamação/metabolismo , Lipoproteínas LDL/metabolismo , Masculino , Pessoa de Meia-Idade , Neovascularização Fisiológica , Fenótipo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Adulto Jovem
7.
Eur J Pharmacol ; 691(1-3): 125-33, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22721615

RESUMO

Angiogenesis, the growth of new blood vessels, is necessary for cancerous tumors to keep growing and spreading. Suppression of abnormal angiogenesis may provide therapeutic strategies for the treatment of angiogenesis-dependent disorders. In the present study, we describe the in vitro and in vivo anti-angiogenic activities of the flavonoid precursor 4-hydroxychalcone (Q797). This chalcone (22µg/ml) suppressed several steps of angiogenesis, including endothelial cell proliferation, migration and tube formation without showing any signs of cytotoxicity. Moreover, we found a selective effect on activated endothelial cells, in particular with resting endothelial cells and the human epithelial tumor cell lines (HeLa, MCF-7, A549). In addition, Q797 was able to modulate both vascular endothelial growth factor (VEGF)- and basic fibroblast growth factor (FGF)- induced phosphorylation of extracellular signal-regulated kinase (ERK)-1/-2 and Akt kinase. It did not influence the nuclear translocation of p65 subunit of the nuclear factor-κB (NF-κB) when human endothelial cells were stimulated with tumor necrosis factor (TNF)-α. Taken together this indicates that the Q797-mediated inhibition of in vitro angiogenic features of endothelial cells is most likely caused by suppression of growth factor pathways. The potent inhibitory effect of Q797 on bFGF-driven neovascularization was also demonstrated in vivo using the chick chorioallantoic membrane (CAM) assay. In summary, this chalcone could serve as a new leading structure in the discovery of new potent synthetic angiogenesis inhibitors.


Assuntos
Inibidores da Angiogênese/farmacologia , Chalconas/farmacologia , Inibidores da Angiogênese/química , Inibidores da Angiogênese/uso terapêutico , Animais , Capilares/efeitos dos fármacos , Capilares/fisiologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Chalconas/química , Chalconas/uso terapêutico , Embrião de Galinha , Desenho de Fármacos , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Fibrina/metabolismo , Células HeLa , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Neovascularização Patológica/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos
8.
Shock ; 29(2): 217-22, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17693923

RESUMO

Acute renal failure during human sepsis is often nonoliguric. To study the underlying mechanisms, renal function was assessed in endotoxic and control male Wistar rats during and after saline loading and treatment with the selective V2 receptor agonist desmopressin. Escherichia coli endotoxin (dose, 8 mg/kg) was administered from time (t)=0 to t=60 min; saline loading (rate, 5 mL/100 g per hour) was administered from t=0 to t=120 min. Thereafter, half of each group received desmopressin (dose, 10 microg) for 1 h. The inner medullary (IM) osmolality, hematocrit, plasma, and urinary concentrations of sodium, potassium, urea, and osmolality were measured; then, aquaporin 2 (AQP2) immunohistochemistry was performed. Plasma vasopressin concentrations were measured at t=180 min. Saline loading increased urine volume in all rats. In the endotoxic group, mean arterial pressure decreased when saline loading was stopped. Despite increased hematocrit and vasopressin levels (>16 pg/mL), the endotoxin group had a low IM osmolality (mean +/- SEM, 412+/-0.04 mOsm/kg H2O) in comparison with the control group (mean +/- SEM, 1,094+/-0.17 mOsm/kg H2O) and was not able to either decrease urine volume or raise urine osmolality. Desmopressin treatment in endotoxin-treated rats maintained mean arterial pressure, increased sodium reabsorption, IM osmolality, and urine osmolality, and decreased urine flow. The AQP2 intensity decreased in the endotoxin group, and the apical localization disappeared; both were not affected by desmopressin. Our results indicate that endotoxemia in rats acutely diminishes renal urinary concentration capacity and is associated with a decreased IM osmolality and diminished apical AQP2 localization. These findings may help to explain nonoliguric acute renal failure in human septic shock.


Assuntos
Desamino Arginina Vasopressina/farmacologia , Endotoxemia/tratamento farmacológico , Animais , Aquaporina 2/análise , Aquaporina 2/metabolismo , Desamino Arginina Vasopressina/administração & dosagem , Endotoxemia/induzido quimicamente , Endotoxinas/administração & dosagem , Endotoxinas/farmacologia , Hemodinâmica/efeitos dos fármacos , Imuno-Histoquímica , Medula Renal/efeitos dos fármacos , Medula Renal/metabolismo , Túbulos Renais Coletores/efeitos dos fármacos , Túbulos Renais Coletores/metabolismo , Masculino , Concentração Osmolar , Potássio/metabolismo , Ratos , Ratos Wistar , Sódio/metabolismo , Vasopressinas/sangue
9.
Nephrol Dial Transplant ; 18(12): 2589-95, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14605282

RESUMO

BACKGROUND: Haemodialysis (HD) with cuprophan (CU) dialysers leads to a severe transient granulocytopenia. In the present study, we challenge the hypothesis that granulocytes sequester within the pulmonary vasculature simply because this is the first vascular bed encountered. This hypothesis is based upon experiments in which activated plasma or complement fragments were infused into animals, and may not pertain to the more complex HD situation. METHODS: We used a rabbit model of HD, and returned the blood into the caval vein (v-HD) or aorta (a-HD). The mesentery was continuously monitored by intravital video microscopy, whereas other tissues were collected at the nadir of granulocytopenia and analysed immunohistochemically. RESULTS: Compared with controls, the number of granulocytes within alveolar walls was almost 2-fold higher following HD, with no difference between venous and arterial blood return. In addition, both v-HD and a-HD induced granulocyte accumulation within part of the larger pulmonary microvessels, though the amount of granulocytes found was 2-fold higher after v-HD. At no time did a-HD induce granulocyte sequestration within the mesenteric microcirculation. Neither did arterial return increase their number in other first-pass tissues like skeletal muscle or renal glomeruli, but it did so in the liver. In the heart, granulocyte content decreased during HD. CONCLUSIONS: Pulmonary sequestration of granulocytes during CU HD is not simply a first-pass effect, but is organ specific to a great extent. The accumulation within larger microvessels suggests an important role for adhesion molecules, whereas cellular stiffening may be involved in granulocyte retention within alveolar capillaries.


Assuntos
Agranulocitose/imunologia , Quimiotaxia de Leucócito/imunologia , Granulócitos/imunologia , Diálise Renal/efeitos adversos , Agranulocitose/etiologia , Animais , Humanos , Pulmão/imunologia , Modelos Animais , Coelhos
10.
Am J Physiol Heart Circ Physiol ; 285(2): H883-90, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12714331

RESUMO

Creatine kinase (CK) and glycolysis represent important energy-buffering processes in the cardiac myocyte. Although the role of compartmentalized CK in energy transfer has been investigated intensely, similar duties for intracellular glycolysis have not been demonstrated. By measuring the response time of mitochondrial oxygen consumption to dynamic workload jumps (tmito) in isolated rabbit hearts, we studied the effect of inhibiting energetic systems (CK and/or glycolysis) on transcytosolic signal transduction that couples cytosolic ATP hydrolysis to activation of oxidative phosphorylation. Tyrode-perfused hearts were exposed to 15 min of the following: 1) 0.4 mM iodoacetamide (IA; n = 6) to block CK (CK activity <3% vs. control), 2) 0.3 mM iodoacetic acid (IAA; n = 5) to inhibit glycolysis (GAPDH activity <3% vs. control), or 3) vehicle (control, n = 7) at 37 degrees C. Pretreatment tmito was similar across groups at 4.3 +/- 0.3 s (means +/- SE). No change in tmito was observed in control hearts; however, in IAA- and IA-treated hearts, tmito decreased by 15 +/- 3% and 40 +/- 5%, respectively (P < 0.05 vs. control), indicating quicker energy supply-demand signaling in the absence of ADP/ATP buffering by CK or glycolysis. The faster response times in IAA and IA groups were independent of the size of the workload jump, and the increase in myocardial oxygen consumption during workload steps was unaffected by CK or glycolysis blockade. Contractile function was compromised by IAA and IA treatment versus control, with contractile reserve (defined as increase in rate-pressure product during a standard heart rate jump) reduced to 80 +/- 8% and 80 +/- 10% of baseline, respectively (P < 0.05 vs. control), and significant elevations in end-diastolic pressure, suggesting raised ADP concentration. These results demonstrate that buffering of phosphate metabolites by glycolysis in the cytosol contributes appreciably to slower mitochondrial activation and may enhance contractile efficiency during increased cardiac workloads. Glycolysis may therefore play a role similar to CK in heart muscle.


Assuntos
Creatina Quinase/metabolismo , Metabolismo Energético/fisiologia , Glicólise/fisiologia , Contração Miocárdica/fisiologia , Miocárdio/metabolismo , Animais , Soluções Tampão , Creatina Quinase/antagonistas & inibidores , Metabolismo Energético/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Iodoacetamida/farmacologia , Ácido Iodoacético/farmacologia , Masculino , Contração Miocárdica/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Coelhos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
11.
Am J Physiol Renal Physiol ; 283(1): F86-92, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12060590

RESUMO

In the present study, we investigated renal microvascular responses to ANG-(1-7) and ANG IV. Diameter changes of small interlobular arteries, afferent arterioles, and efferent arterioles were assessed by using isolated perfused hydronephrotic rat kidneys. ANG-(1-7) and ANG IV concentration dependently decreased the diameters of all investigated renal microvessel, however, with a much lower potency than ANG II. The ANG II type 1 receptor blocker irbesartan completely reversed the responses to ANG-(1-7) and ANG IV, whereas the ANG II type 2 receptor blocker PD-123319 had no effect. Both ANG-(1-7) and ANG IV failed to alter renal microvascular constriction induced by ANG II. In addition, subnanomolar concentrations of ANG-(1-7) had no effect on the myogenic-induced tone of interlobular arteries and afferent arterioles. Thus our data indicate that at high concentrations, ANG-(1-7) and ANG IV are able to activate the ANG II type 1 receptor, thereby inducing renal microvascular constriction. The failure of ANG-(1-7) and ANG IV to reduce ANG II- and pressure-induced constrictions suggests that these fragments do not exert a vasodilator and/or ANG II antagonistic action in the kidney.


Assuntos
Angiotensina II/análogos & derivados , Angiotensina II/farmacologia , Fragmentos de Peptídeos/farmacologia , Circulação Renal/fisiologia , Angiotensina I , Animais , Hidronefrose/fisiopatologia , Técnicas In Vitro , Masculino , Microcirculação/efeitos dos fármacos , Microcirculação/fisiologia , Ratos , Ratos Sprague-Dawley , Receptor Tipo 1 de Angiotensina , Receptor Tipo 2 de Angiotensina , Receptores de Angiotensina/metabolismo , Circulação Renal/efeitos dos fármacos , Vasoconstritores/farmacologia , Vasodilatação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...