Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Ther Oncol ; 32(2): 200802, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38706988

RESUMO

Treatment resistance and immune escape are hallmarks of metastatic rhabdomyosarcoma (RMS), underscoring the urgent medical need for therapeutic agents against this disease entity as a key challenge in pediatric oncology. Chimeric antigen receptor (CAR)-based immunotherapies, such as the ErbB2 (Her2)-CAR-engineered natural killer (NK) cell line NK-92/5.28.z, provide antitumor cytotoxicity primarily through CAR-mediated cytotoxic granule release and thereafter-even in cases with low surface antigen expression or tumor escape-by triggering intrinsic NK cell-mediated apoptosis induction via additional ligand/receptors. In this study, we showed that bortezomib increased susceptibility toward apoptosis in clinically relevant RMS cell lines RH30 and RH41, and patient-derived RMS tumor organoid RMS335, by upregulation of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor DR5 in these metastatic, relapsed/refractory (r/r) RMS tumors. Subsequent administration of NK-92/5.28.z cells significantly enhanced antitumor activity in vitro. Applying recombinant TRAIL instead of NK-92/5.28.z cells confirmed that the synergistic antitumor effects of the combination treatment were mediated via TRAIL. Western blot analyses indicated that the combination treatment with bortezomib and NK-92/5.28.z cells increased apoptosis by interacting with the nuclear factor κB, JNK, and caspase pathways. Overall, bortezomib pretreatment can sensitize r/r RMS tumors to CAR- and, by upregulating DR5, TRAIL-mediated cytotoxicity of NK-92/5.28.z cells.

2.
Cell Death Discov ; 10(1): 128, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467608

RESUMO

Ubiquitin-specific peptidase 22 (USP22) is a deubiquitinating enzyme (DUB) that underlies tumorigenicity, proliferation, cell death and differentiation through deubiquitination of histone and non-histone targets. Ubiquitination determines stability, localization and functions of cell fate proteins and controls cell-protective signaling pathways to surveil cell cycle progression. In a variety of carcinomas, lymphomas and leukemias, ubiquitination regulates the tumor-suppressive functions of the promyelocytic leukemia protein (PML), but PML-specific DUBs, DUB-controlled PML ubiquitin sites and the functional consequences of PML (de)ubiquitination remain unclear. Here, we identify USP22 as regulator of PML and the oncogenic acute promyelocytic leukemia (APL) fusion PML-RARα protein stability and identify a destabilizing role of PML residue K394. Additionally, loss of USP22 upregulates interferon (IFN) and IFN-stimulated gene (ISG) expression in APL and induces PML-RARα stabilization and a potentiation of the cell-autonomous sensitivity towards all-trans retinoic acid (ATRA)-mediated differentiation. Our findings imply USP22-dependent surveillance of PML-RARα stability and IFN signaling as important regulator of APL pathogenesis, with implications for viral mimicry, differentiation and cell fate regulation in other leukemia subtypes.

3.
Cell Death Dis ; 15(1): 77, 2024 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245534

RESUMO

Plasma membrane accumulation of phosphorylated mixed lineage kinase domain-like (MLKL) is a hallmark of necroptosis, leading to membrane rupture and inflammatory cell death. Pro-death functions of MLKL are tightly controlled by several checkpoints, including phosphorylation. Endo- and exocytosis limit MLKL membrane accumulation and counteract necroptosis, but the exact mechanisms remain poorly understood. Here, we identify linear ubiquitin chain assembly complex (LUBAC)-mediated M1 poly-ubiquitination (poly-Ub) as novel checkpoint for necroptosis regulation downstream of activated MLKL in cells of human origin. Loss of LUBAC activity inhibits tumor necrosis factor α (TNFα)-mediated necroptosis, not by affecting necroptotic signaling, but by preventing membrane accumulation of activated MLKL. Finally, we confirm LUBAC-dependent activation of necroptosis in primary human pancreatic organoids. Our findings identify LUBAC as novel regulator of necroptosis which promotes MLKL membrane accumulation in human cells and pioneer primary human organoids to model necroptosis in near-physiological settings.


Assuntos
Necroptose , Proteínas Quinases , Humanos , Necrose/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Fosforilação , Morte Celular , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Apoptose/fisiologia
4.
Am J Physiol Cell Physiol ; 325(6): C1451-C1469, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37899749

RESUMO

Induction of alternative, non-apoptotic cell death programs such as cell-lethal autophagy and mitophagy represent possible strategies to combat glioblastoma (GBM). Here we report that VLX600, a novel iron chelator and oxidative phosphorylation (OXPHOS) inhibitor, induces a caspase-independent type of cell death that is partially rescued in adherent U251 ATG5/7 (autophagy related 5/7) knockout (KO) GBM cells and NCH644 ATG5/7 knockdown (KD) glioma stem-like cells (GSCs), suggesting that VLX600 induces an autophagy-dependent cell death (ADCD) in GBM. This ADCD is accompanied by decreased oxygen consumption, increased expression/mitochondrial localization of BNIP3 (BCL2 interacting protein 3) and BNIP3L (BCL2 interacting protein 3 like), the induction of mitophagy as demonstrated by diminished levels of mitochondrial marker proteins [e.g., COX4I1 (cytochrome c oxidase subunit 4I1)] and the mitoKeima assay as well as increased histone H3 and H4 lysine tri-methylation. Furthermore, the extracellular addition of iron is able to significantly rescue VLX600-induced cell death and mitophagy, pointing out an important role of iron metabolism for GBM cell homeostasis. Interestingly, VLX600 is also able to completely eliminate NCH644 GSC tumors in an organotypic brain slice transplantation model. Our data support the therapeutic concept of ADCD induction in GBM and suggest that VLX600 may be an interesting novel drug candidate for the treatment of this tumor.NEW & NOTEWORTHY Induction of cell-lethal autophagy represents a possible strategy to combat glioblastoma (GBM). Here, we demonstrate that the novel iron chelator and OXPHOS inhibitor VLX600 exerts pronounced tumor cell-killing effects in adherently cultured GBM cells and glioblastoma stem-like cell (GSC) spheroid cultures that depend on the iron-chelating function of VLX600 and on autophagy activation, underscoring the context-dependent role of autophagy in therapy responses. VLX600 represents an interesting novel drug candidate for the treatment of this tumor.


Assuntos
Antineoplásicos , Glioblastoma , Humanos , Mitofagia/fisiologia , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Autofagia , Antineoplásicos/farmacologia , Apoptose , Proteínas Mitocondriais/metabolismo , Quelantes de Ferro/farmacologia , Ferro , Proteínas Proto-Oncogênicas c-bcl-2 , Linhagem Celular Tumoral
5.
FEBS J ; 290(1): 37-54, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-34710282

RESUMO

Lytic forms of programmed cell death, like necroptosis, are characterised by cell rupture and the release of cellular contents, often provoking inflammatory responses. In the recent years, necroptosis has been shown to play important roles in human diseases like cancer, infections and ischaemia/reperfusion injury. Coordinated interactions between RIPK1, RIPK3 and MLKL lead to the formation of a dedicated death complex called the necrosome that triggers MLKL-mediated membrane rupture and necroptotic cell death. Necroptotic cell death is tightly controlled by post-translational modifications, among which especially phosphorylation has been characterised in great detail. Although selective ubiquitination is relatively well-explored in the early initiation stages of necroptosis, the mechanisms and functional consequences of RIPK3 and MLKL ubiquitination for necrosome function and necroptosis are only starting to emerge. This review provides an overview on how site-specific ubiquitination of RIPK3 and MLKL regulates, fine-tunes and reverses the execution of necroptotic cell death.


Assuntos
Necroptose , Proteínas Quinases , Humanos , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Morte Celular , Apoptose/fisiologia , Ubiquitinação , Proteína Serina-Treonina Quinases de Interação com Receptores/genética
6.
Cell Death Dis ; 13(8): 684, 2022 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-35933402

RESUMO

Pattern recognition receptors (PRRs) and interferons (IFNs) serve as essential antiviral defense against SARS-CoV-2, the causative agent of the COVID-19 pandemic. Type III IFNs (IFN-λ) exhibit cell-type specific and long-lasting functions in auto-inflammation, tumorigenesis, and antiviral defense. Here, we identify the deubiquitinating enzyme USP22 as central regulator of basal IFN-λ secretion and SARS-CoV-2 infections in human intestinal epithelial cells (hIECs). USP22-deficient hIECs strongly upregulate genes involved in IFN signaling and viral defense, including numerous IFN-stimulated genes (ISGs), with increased secretion of IFN-λ and enhanced STAT1 signaling, even in the absence of exogenous IFNs or viral infection. Interestingly, USP22 controls basal and 2'3'-cGAMP-induced STING activation and loss of STING reversed STAT activation and ISG and IFN-λ expression. Intriguingly, USP22-deficient hIECs are protected against SARS-CoV-2 infection, viral replication, and the formation of de novo infectious particles, in a STING-dependent manner. These findings reveal USP22 as central host regulator of STING and type III IFN signaling, with important implications for SARS-CoV-2 infection and antiviral defense.


Assuntos
COVID-19 , Interferon Tipo I , Proteínas de Membrana/metabolismo , Ubiquitina Tiolesterase , Antivirais/farmacologia , Humanos , Interferon Tipo I/genética , Interferons/metabolismo , Pandemias , SARS-CoV-2 , Ubiquitina Tiolesterase/metabolismo , Interferon lambda
7.
Int J Mol Sci ; 23(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35408930

RESUMO

Mutations in the Von Hippel-Lindau (VHL) gene are the driving force in many forms of clear cell renal cell carcinoma (ccRCC) and promote hypoxia-inducible factor (HIF)-dependent tumor proliferation, metastasis and angiogenesis. Despite the progress that has already been made, ccRCC generally remain resistant to conventional therapies and ccRCC patients suffer from metastasis and acquired resistance, highlighting the need for novel therapeutic options. Cysteinyl leukotriene receptor 1 (CysLTR1) antagonists, like zafirlukast, are administered in bronchial asthma to control eicosanoid signaling. Intriguingly, long-term use of zafirlukast decreases cancer risk and leukotriene receptor antagonists inhibit tumor growth, but the mechanisms still remain unexplored. Therefore, we aim to understand the mechanisms of zafirlukast-mediated cell death in ccRCC cells. We show that zafirlukast induces VHL-dependent and TNFα-independent non-apoptotic and non-necroptotic cell death in ccRCC cells. Cell death triggered by zafirlukast could be rescued with antioxidants and the PARP-1 inhibitor Olaparib, and additionally relies on HIF-2α. Finally, MG-132-mediated proteasome inhibition sensitized VHL wild-type cells to zafirlukast-induced cell death and inhibition of HIF-2α rescued zafirlukast- and MG-132-triggered cell death. Together, these results highlight the importance of VHL, HIF and proteasomal degradation in zafirlukast-induced oxidative cell death with potentially novel therapeutic implications for ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Morte Celular , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Indóis , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Estresse Oxidativo , Fenilcarbamatos , Sulfonamidas , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
8.
Cell Death Dis ; 12(9): 816, 2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34462421

RESUMO

Pancreatic cancer (PC) still remains a major cause of cancer-related death worldwide and alternative treatments are urgently required. A common problem of PC is the development of resistance against apoptosis that limits therapeutic success. Here we demonstrate that the prototypical Smac mimetic BV6 cooperates with the stimulator of interferon (IFN) genes (STING) ligand 2',3'-cyclic guanosine monophosphate-adenosine monophosphate (2'3'-cGAMP) to trigger necroptosis in apoptosis-deficient PC cells. Pharmacological inhibition of key components of necroptosis signaling, such as receptor-interacting protein 1 (RIPK1), RIPK3, and mixed lineage kinase domain-like protein (MLKL), significantly rescues PC cells from 2'3'-cGAMP/BV6/zVAD.fmk-mediated cell death, suggesting the induction of necroptosis. Consistently, 2'3'-cGAMP/BV6 co-treatment promotes phosphorylation of MLKL. Furthermore, we show that 2'3'-cGAMP stimulates the production of type I IFNs, which cooperate with BV6 to trigger necroptosis in apoptosis-deficient settings. STING silencing via siRNA or CRISPR/Cas9-mediated gene knockout protects PC cells from 2'3'-cGAMP/BV6/zVAD.fmk-mediated cell death. Interestingly, we demonstrate that nuclear factor-κB (NF-κB), tumor necrosis factor-α (TNFα), and IFN-regulatory factor 1 (IRF1) signaling are involved in triggering 2'3'-cGAMP/BV6/zVAD.fmk-induced necroptosis. In conclusion, we show that activated STING and BV6 act together to exert antitumor effects on PC cells with important implications for the design of new PC treatment concepts.


Assuntos
Apoptose , Proteínas de Membrana/metabolismo , Necroptose , Oligopeptídeos/farmacologia , Neoplasias Pancreáticas/patologia , Clorometilcetonas de Aminoácidos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imunomodulação , Fator Regulador 1 de Interferon/metabolismo , Interferon beta/metabolismo , NF-kappa B/metabolismo , Necroptose/efeitos dos fármacos , Nucleotídeos Cíclicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Neoplasias Pancreáticas
9.
Neoplasia ; 23(5): 539-550, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33971465

RESUMO

Burkitt's lymphoma (BL) is a highly aggressive form of B-cell non-Hodgkin's lymphoma. The clinical outcome in children with BL has improved over the last years but the prognosis for adults is still poor, highlighting the need for novel treatment strategies. Here, we report that the combinational treatment with the Smac mimetic BV6 and TRAIL triggers necroptosis in BL when caspases are blocked by zVAD.fmk (TBZ treatment). The sensitivity of BL cells to TBZ correlates with MLKL expression. We demonstrate that necroptotic signaling critically depends on MLKL, since siRNA-induced knockdown and CRISPR/Cas9-mediated knockout of MLKL profoundly protect BL cells from TBZ-induced necroptosis. Conversely, MLKL overexpression in cell lines expressing low levels of MLKL leads to necroptosis induction, which can be rescued by pharmacological inhibitors, highlighting the important role of MLKL for necroptosis execution. Importantly, the methylation status analysis of the MLKL promoter reveals a correlation between methylation and MLKL expression. Thus, MLKL is epigenetically regulated in BL and might serve as a prognostic marker for treatment success of necroptosis-based therapies. These findings have crucial implications for the development of new treatment options for BL.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Linfoma de Burkitt/genética , Linfoma de Burkitt/metabolismo , Proteínas Mitocondriais/metabolismo , Necroptose/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Proteínas Reguladoras de Apoptose/química , Mimetismo Biológico , Linfoma de Burkitt/patologia , Morte Celular , Linhagem Celular Tumoral , Suscetibilidade a Doenças , Regulação Neoplásica da Expressão Gênica , Humanos , Ligantes , Proteínas Mitocondriais/química , Necroptose/efeitos dos fármacos , Oligopeptídeos/metabolismo , Oligopeptídeos/farmacologia , Interferência de RNA
10.
J Leukoc Biol ; 109(2): 363-371, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32401398

RESUMO

TNFR1 is a crucial regulator of NF-ĸB-mediated proinflammatory cell survival responses and programmed cell death (PCD). Deregulation of TNFα- and TNFR1-controlled NF-ĸB signaling underlies major diseases, like cancer, inflammation, and autoimmune diseases. Therefore, although being routinely used, antagonists of TNFα might also affect TNFR2-mediated processes, so that alternative approaches to directly antagonize TNFR1 are beneficial. Here, we apply quantitative single-molecule localization microscopy (SMLM) of TNFR1 in physiologic cellular settings to validate and characterize TNFR1 inhibitory substances, exemplified by the recently described TNFR1 antagonist zafirlukast. Treatment of TNFR1-mEos2 reconstituted TNFR1/2 knockout mouse embryonic fibroblasts (MEFs) with zafirlukast inhibited both ligand-independent preligand assembly domain (PLAD)-mediated TNFR1 dimerization as well as TNFα-induced TNFR1 oligomerization. In addition, zafirlukast-mediated inhibition of TNFR1 clustering was accompanied by deregulation of acute and prolonged NF-ĸB signaling in reconstituted TNFR1-mEos2 MEFs and human cervical carcinoma cells. These findings reveal the necessity of PLAD-mediated, ligand-independent TNFR1 dimerization for NF-ĸB activation, highlight the PLAD as central regulator of TNFα-induced TNFR1 oligomerization, and demonstrate that TNFR1-mEos2 MEFs can be used to investigate TNFR1-antagonizing compounds employing single-molecule quantification and functional NF-ĸB assays at physiologic conditions.


Assuntos
NF-kappa B/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/antagonistas & inibidores , Transdução de Sinais , Imagem Individual de Molécula , Compostos de Tosil/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Animais , Linhagem Celular , Citocinas/biossíntese , Células HeLa , Humanos , Indóis , Camundongos , Fenilcarbamatos , Multimerização Proteica/efeitos dos fármacos , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA