Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Geobiology ; 20(2): 310-330, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34676677

RESUMO

Microbial mats floating within multiple hydrothermally sourced streams in El Tatio, Chile, frequently exhibit brittle siliceous crusts (~1 mm thick) above the air-water interface. The partially silicified mats contain a diverse assemblage of microbial clades and metabolisms, including cyanobacteria performing oxygenic photosynthesis. Surficial crusts are composed of several amorphous silica layers containing well-preserved filaments (most likely cyanobacteria) and other cellular textures overlying EPS-rich unsilicified mats. Environmental logs, silica crust distribution, and microbial preservation patterns provide evidence for crust formation via repeated cycles of evaporation and silica precipitation. Within the mats, in situ microelectrode profiling reveals that daytime oxygen concentrations and pH values are diminished beneath silica crusts compared with adjacent unencrusted communities, indicating localized inhibition of oxygenic photosynthesis due to light attenuation. As a result, aqueous conditions under encrusted mats have a higher saturation state with regard to amorphous silica compared with adjacent, more active mats where high pH increases silica solubility, likely forming a modest feedback loop between diminished photosynthesis and crust precipitation. However, no fully lithified sinters are associated with floating encrusted mats in El Tatio streams, as both subaqueous and subaerial silica precipitation are limited by undersaturated, low-SiO2 (<150 ppm) stream waters. By contrast, well-cemented sinters can form by evaporation in silica-undersaturated solutions above 200 ppm SiO2 . Floating mats in El Tatio therefore represent a specific sinter preservation window, where evaporation in silica-undersaturated microbial mats produces crusts, which preserve cells and affect mat chemistry, but low-silica concentrations prevent the formation of lasting sinter deposits. Patterns of silica precipitation in El Tatio microbial communities show that the preservation potential of silicifying mats in the rock record is strongly dependent on aqueous silica concentrations.


Assuntos
Cianobactérias , Dióxido de Silício , Chile , Oxigênio , Rios
2.
Geobiology ; 20(1): 137-155, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34590770

RESUMO

In silica-rich hot spring environments, internally laminated, digitate sinter deposits are often interpreted as bio-mediated structures. The organic components of microbial communities (cell surfaces, sheaths and extracellular polymeric substances) can act as templates for silica precipitation, therefore influencing digitate sinter morphogenesis. In addition to biologic surface-templating effects, various microenvironmental factors (hydrodynamics, local pH and fluctuating wind patterns) can also influence silica precipitation, and therefore the morphology of resulting digitate sinters. Digitate sinter morphology thus depends on the dynamic interplay between microenvironmentally driven silica precipitation and microbial growth, but the relative contributions of both factors are a topic of continuing research. Here we present a detailed study of digitate silica sinters in distal, low-temperature regimes of the El Tatio geothermal field, Chile. This high-altitude geothermal field is extremely arid and windy, and has one of the highest silica precipitation rates found in the world. We find that digitate silica sinters at El Tatio always accrete into the prevailing eastward wind direction and exhibit laminar growth patterns coinciding with day-night cycles of wind- and thermally driven evaporation and rewetting. Subaerial parts of digitate sinters lack preserved organics and sinter textures that would indicate past microbial colonization, while filamentous cyanobacteria with resistant, silicified sheaths only inhabit subaqueous cavities that crosscut the primary laminations. We conclude that, although fragile biofilms of extremophile micro-organisms may have initially been present and templated silica precipitation at the tips of these digitate sinters, the saltation of sand grains and precipitation of silica by recurrent wind- and thermally driven environmental forcing at El Tatio are important, if not dominant factors shaping the morphology of these digitate structures. Our study sheds light on the relative contributions of biogenic and abiogenic factors in sinter formation in geothermal systems, with geobiological implications for the cautious interpretation of stromatolite-like features in ancient silica deposits on Earth and Mars.


Assuntos
Cianobactérias , Fontes Termais , Chile , Fontes Termais/microbiologia , Morfogênese , Dióxido de Silício/química
3.
Geobiology ; 19(6): 557-584, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34296512

RESUMO

Organic microfossils in Meso- and Neoproterozoic rocks are of key importance to track the emergence and evolution of eukaryotic life. An increasing number of studies combine Raman spectroscopy with synchrotron-based methods to characterize these microfossils. A recurring observation is that Raman spectra of organic microfossils show negligible variation on a sample scale and that variation between different samples can be explained by differences in thermal maturation or in the biologic origin of organic precursor material. There is a paucity of work, however, that explores the extent to which the petrographic framework and diagenetic processes might influence the chemical structure of organic materials. We present a detailed Raman spectroscopy-based study of a complex organic microfossil assemblage in the ca. 1 Ga old Angmaat Formation, Baffin Island, Canada. This formation contains abundant early diagenetic chert that preserves silicified microbial mats with numerous, readily identifiable organic microfossils. Individual chert beds show petrographic differences with discrete episodes of cementation and recrystallization. Raman spectroscopy reveals measurable variation of organic maturity between samples and between neighboring organic microfossils of the same taxonomy and taphonomic state. Scanning transmission X-ray microscopy performed on taphonomically similar coccoidal microfossils from the same thin section shows distinct chemical compositions, with varying ratios of aromatic compounds to ketones and phenols. Such observations imply that geochemical variation of organic matter is not necessarily coupled to thermal alteration or organic precursor material. Variation of the Raman signal across single samples is most likely linked to the diagenetic state of analyzed materials and implies an association between organic preservation and access to diagenetic fluids. Variation in the maturity of individual microfossils may be a natural outcome of local diagenetic processes and potentially exceeds differences derived from precursor organic material. These observations stress the importance of detailed in situ characterization by Raman spectroscopy to identify target specimens for further chemical analysis.


Assuntos
Fósseis , Análise Espectral Raman , Canadá , Sedimentos Geológicos , Microscopia
4.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34074783

RESUMO

Oxygen concentration defines the chemical structure of Earth's ecosystems while it also fuels the metabolism of aerobic organisms. As different aerobes have different oxygen requirements, the evolution of oxygen levels through time has likely impacted both environmental chemistry and the history of life. Understanding the relationship between atmospheric oxygen levels, the chemical environment, and life, however, is hampered by uncertainties in the history of oxygen levels. We report over 5,700 Raman analyses of organic matter from nine geological formations spanning in time from 742 to 1,729 Ma. We find that organic matter was effectively oxidized during weathering and little was recycled into marine sediments. Indeed, during this time interval, organic matter was as efficiently oxidized during weathering as it is now. From these observations, we constrain minimum atmospheric oxygen levels to between 2 to 24% of present levels from the late Paleoproterozoic Era into the Neoproterozoic Era. Indeed, our results reveal that eukaryote evolution, including early animal evolution, was not likely hindered by oxygen through this time interval. Our results also show that due to efficient organic recycling during weathering, carbon cycle dynamics can be assessed directly from the sediment carbon record.


Assuntos
Atmosfera/química , Carbono/química , Fósseis , Oxigênio/química , Ciclo do Carbono , Ecossistema , História Antiga
6.
Phys Life Rev ; 34-35: 62-82, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32303465

RESUMO

It has been experimentally demonstrated that, under alkaline conditions, silica is able to induce the formation of mineral self-assembled inorganic-inorganic composite materials similar in morphology, texture and nanostructure to the hybrid biomineral structures that, millions of years later, life was able to self-organize. These mineral self-organized structures (MISOS) have been also shown to work as effective catalysts for prebiotic chemical reactions and to easily create compartmentalization within the solutions where they form. We reason that, during the very earliest history of this planet, there was a geochemical scenario that inevitably led to the existence of a large-scale factory of simple and complex organic compounds, many of which were relevant to prebiotic chemistry. The factory was built on a silica-rich high-pH ocean and powered by two main factors: a) a quasi-infinite source of simple carbon molecules synthesized abiotically from reactions associated with serpentinization, or transported from meteorites and produced from their impact on that alkaline ocean, and b) the formation of self-organized silica-metal mineral composites that catalyze the condensation of simple molecules in a methane-rich reduced atmosphere. We discuss the plausibility of this geochemical scenario, review the details of the formation of MISOS and its catalytic properties and the transition towards a slightly alkaline to neutral ocean.


Assuntos
Meteoroides , Origem da Vida , Planeta Terra , Minerais , Planetas
7.
Geobiology ; 18(3): 282-305, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31876987

RESUMO

The identification of cellular life in the rock record is problematic, since microbial life forms, and particularly bacteria, lack sufficient morphologic complexity to be effectively distinguished from certain abiogenic features in rocks. Examples include organic pore-fillings, hydrocarbon-containing fluid inclusions, organic coatings on exfoliated crystals and biomimetic mineral aggregates (biomorphs). This has led to the interpretation and re-interpretation of individual microstructures in the rock record. The morphologic description of entire populations of microstructures, however, may provide support for distinguishing between preserved micro-organisms and abiogenic objects. Here, we present a statistical approach based on quantitative morphological description of populations of microstructures. Images of modern microbial populations were compared to images of two relevant types of abiogenic microstructures: interstitial spaces and silica-carbonate biomorphs. For the populations of these three systems, the size, circularity, and solidity of individual particles were calculated. Subsequently, the mean/SD, skewness, and kurtosis of the statistical distributions of these parameters were established. This allowed the qualitative and quantitative comparison of distributions in these three systems. In addition, the fractal dimension and lacunarity of the populations were determined. In total, 11 parameters, independent of absolute size or shape, were used to characterize each population of microstructures. Using discriminant analysis with parameter subsets, it was found that size and shape distributions are typically sufficient to discriminate populations of biologic and abiogenic microstructures. Analysis of ancient, yet unambiguously biologic, samples (1.0 Ga Angmaat Formation, Baffin Island, Canada) suggests that taphonomic effects can alter morphometric characteristics and complicate image analysis; therefore, a wider range of microfossil assemblages should be studied in the future before automated analyses can be developed. In general, however, it is clear from our results that there is great potential for morphometric descriptions of populations in the context of life recognition in rocks, either on Earth or on extraterrestrial bodies.


Assuntos
Sedimentos Geológicos , Bactérias , Carbonatos , Planeta Terra , Minerais
8.
Astrobiology ; 20(4): 500-524, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31663774

RESUMO

Palisade fabric is a ubiquitous texture of silica sinter found in low temperature (<40°C) regimes of hot spring environments, and it is formed when populations of filamentous microorganisms act as templates for silica polymerization. Although it is known that postdepositional processes such as biological degradation and dewatering can strongly affect preservation of these fabrics, the impact of extreme aridity has so far not been studied in detail. Here, we report a detailed analysis of recently silicified palisade fabrics from a geyser in El Tatio, Chile, tracing the progressive degradation of microorganisms within the silica matrix. This is complemented by heating experiments of natural sinter samples to assess the role of diagenesis. Sheathed cyanobacteria, identified as Leptolyngbya sp., were found to be incorporated into silica sinter by irregular cycles of wetting, evaporation, and mineral precipitation. Transmission electron microscopy analyses revealed that nanometer-sized silica particles are filling the pore space within individual cyanobacterial sheaths, giving rise to their structural rigidity to sustain a palisade fabric framework. Diagenesis experiments further show that the sheaths of the filaments are preferentially preserved relative to the trichomes, and that the amount of water present within the sinter is an important factor for overall preservation during burial. This study confirms that palisade fabrics are efficiently generated in a highly evaporative geothermal field, and that these biosignatures can be most effectively preserved under dry diagenetic conditions.


Assuntos
Cianobactérias/ultraestrutura , Sedimentos Geológicos/química , Fontes Termais , Dióxido de Silício/análise , Carbono/análise , Chile , Sedimentos Geológicos/microbiologia , Microscopia Confocal , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nitrogênio/análise , RNA Ribossômico 16S/análise , Análise de Sequência de DNA , Água
9.
Nature ; 563(7730): 190-191, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30390067

Assuntos
Vida , Geologia , Microscopia
10.
Nature ; 418(6898): 627-30, 2002 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-12167858

RESUMO

The isotopic composition of graphite is commonly used as a biomarker in the oldest (>3.5 Gyr ago) highly metamorphosed terrestrial rocks. Earlier studies on isotopic characteristics of graphite occurring in rocks of the approximately 3.8-Gyr-old Isua supracrustal belt (ISB) in southern West Greenland have suggested the presence of a vast microbial ecosystem in the early Archean. This interpretation, however, has to be approached with extreme care. Here we show that graphite occurs abundantly in secondary carbonate veins in the ISB that are formed at depth in the crust by injection of hot fluids reacting with older crustal rocks (metasomatism). During these reactions, graphite forms from the disproportionation of Fe(II)-bearing carbonates at high temperature. These metasomatic rocks, which clearly lack biological relevance, were earlier thought to be of sedimentary origin and their graphite association provided the basis for inferences about early life. The new observations thus call for a reassessment of previously presented evidence for ancient traces of life in the highly metamorphosed Early Archaean rock record.


Assuntos
Sedimentos Geológicos/microbiologia , Grafite/química , Carbonatos/química , Ecossistema , Grafite/análise , Groenlândia , Temperatura Alta , Isótopos/análise , Microscopia Eletrônica de Varredura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...