Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 252: 126446, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32182510

RESUMO

The reclamation of tailings, especially acid-generating tailings resulting from the oxidation of sulfide minerals, has been an urgent but difficult task for a long period. Phytoremediation has been received great concerns in the area of metal (loid)s removal in recent two decades. However, in the reclamation of tailings, the term "revegetation" has been mentioned frequently. In order to help to design an appropriate reclamation plan during mine closure stage, this paper aims to distinguish the concepts of reclamation, revegetation and phytoremediation, and then clarify their relationships. After review and discussion, it is concluded that the concept of reclamation includes the concept of revegetation, and revegetation includes phytoremediation. The amended phytostabilization is proposed as the most potential phytoremediation technique for reducing the metal (loid)s mobility in sulfidic tailings. Moreover, since much research has been focusing on microbial activities in the tailings - plants system, this paper further indicated the importance of inorganic geochemical processes in the direct revegetation on sulfidic mine tailings and emphasized its potential being an anticipated research direction in the near future.


Assuntos
Recuperação e Remediação Ambiental/métodos , Mineração , Ácidos , Biodegradação Ambiental , Fenômenos Geológicos , Metais , Minerais , Plantas , Poluentes do Solo/análise , Sulfetos
2.
Artigo em Inglês | MEDLINE | ID: mdl-27222283

RESUMO

The successful use of anaerobic reactors for bioremediation of acid mine drainage has been shown in systems with neutral pH. However, the choice of an efficient and suitable process for such wastewater must consider the capability of operating at acidic pH and in the presence of metals. This work studies the performance of an anaerobic batch reactor, under conditions of varying initial pH for its efficiencies in sulfate removal and metal precipitation from synthetic acid mine drainage. The chemical oxygen demand/sulfate (COD/SO4(2-)) ratio used was 1.00, with ethanol chosen as the only energy and carbon source. The initial pH of the synthetic drainage was progressively set from 7.0 to 4.0 to make it as close as possible to that of real acid mine drainage. Metals were also added starting with iron, zinc, and finally copper. The effectiveness of sulfate and COD removal from the synthetic acid mine drainage increased as the initial pH was reduced. The sulfate removal increased from 38.5 ± 3.7% to 52.2 ± 3%, while the removal of organic matter started at 91.7 ± 2.4% and ended at 99 ± 1%. These results indicate that the sulfate reducing bacteria (SRB) community adapted to lower pH values. The metal removal observed was 88 ± 7% for iron, 98.0 ± 0.5% for zinc and 99 ± 1% for copper. At this stage, an increase in the sulfate removal was observed, which reaches up to 82.2 ± 5.8%. The kinetic parameters for sulfate removal were 0.22 ± 0.04 h(-1) with Fe, 0.26 ± 0.04 h(-1) with Fe and Zn and 0.44 ± 0.04 h(-1) with Fe, Zn, and Cu.


Assuntos
Ácidos/química , Biodegradação Ambiental , Reatores Biológicos , Metais/química , Sulfatos/química , Águas Residuárias/química , Poluentes Químicos da Água/química , Análise da Demanda Biológica de Oxigênio , Concentração de Íons de Hidrogênio , Mineração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...