Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MAGMA ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613715

RESUMO

PURPOSE: Use a conference challenge format to compare machine learning-based gamma-aminobutyric acid (GABA)-edited magnetic resonance spectroscopy (MRS) reconstruction models using one-quarter of the transients typically acquired during a complete scan. METHODS: There were three tracks: Track 1: simulated data, Track 2: identical acquisition parameters with in vivo data, and Track 3: different acquisition parameters with in vivo data. The mean squared error, signal-to-noise ratio, linewidth, and a proposed shape score metric were used to quantify model performance. Challenge organizers provided open access to a baseline model, simulated noise-free data, guides for adding synthetic noise, and in vivo data. RESULTS: Three submissions were compared. A covariance matrix convolutional neural network model was most successful for Track 1. A vision transformer model operating on a spectrogram data representation was most successful for Tracks 2 and 3. Deep learning (DL) reconstructions with 80 transients achieved equivalent or better SNR, linewidth and fit error compared to conventional 320 transient reconstructions. However, some DL models optimized linewidth and SNR without actually improving overall spectral quality, indicating a need for more robust metrics. CONCLUSION: DL-based reconstruction pipelines have the promise to reduce the number of transients required for GABA-edited MRS.

2.
Magn Reson Med ; 90(4): 1253-1270, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37402235

RESUMO

This literature review presents a comprehensive overview of machine learning (ML) applications in proton MR spectroscopy (MRS). As the use of ML techniques in MRS continues to grow, this review aims to provide the MRS community with a structured overview of the state-of-the-art methods. Specifically, we examine and summarize studies published between 2017 and 2023 from major journals in the MR field. We categorize these studies based on a typical MRS workflow, including data acquisition, processing, analysis, and artificial data generation. Our review reveals that ML in MRS is still in its early stages, with a primary focus on processing and analysis techniques, and less attention given to data acquisition. We also found that many studies use similar model architectures, with little comparison to alternative architectures. Additionally, the generation of artificial data is a crucial topic, with no consistent method for its generation. Furthermore, many studies demonstrate that artificial data suffers from generalization issues when tested on in vivo data. We also conclude that risks related to ML models should be addressed, particularly for clinical applications. Therefore, output uncertainty measures and model biases are critical to investigate. Nonetheless, the rapid development of ML in MRS and the promising results from the reviewed studies justify further research in this field.


Assuntos
Aprendizado de Máquina , Prótons , Espectroscopia de Ressonância Magnética/métodos , Fluxo de Trabalho , Espectroscopia de Prótons por Ressonância Magnética
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3047-3050, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36086375

RESUMO

Preterm infants in a neonatal intensive care unit (NICU) are continuously monitored for their vital signs, such as heart rate and oxygen saturation. Body motion patterns are documented intermittently by clinical observations. Changing motion patterns in preterm infants are associated with maturation and clinical events such as late-onset sepsis and seizures. However, continuous motion monitoring in the NICU setting is not yet performed. Video-based motion monitoring is a promising method due to its non-contact nature and therefore unobtrusiveness. This study aims to determine the feasibility of simple video-based methods for infant body motion detection. We investigated and compared four methods to detect the motion in videos of infants, using two datasets acquired with different types of cameras. The thermal dataset contains 32 hours of annotated videos from 13 infants in open beds. The RGB dataset contains 9 hours of annotated videos from 5 infants in incubators. The compared methods include background substruction (BS), sparse optical flow (SOF), dense optical flow (DOF), and oriented FAST and rotated BRIEF (ORB). The detection performance and computation time were evaluated by the area under receiver operating curves (AUC) and run time. We conducted experiments to detect motion and gross motion respectively. In the thermal dataset, the best performance of both experiments is achieved by BS with mean (standard deviation) AUCs of 0.86 (0.03) and 0.93 (0.03). In the RGB dataset, SOF outperforms the other methods in both experiments with AUCs of 0.82 (0.10) and 0.91 (0.05). All methods are efficient to be integrated into a camera system when using low-resolution thermal cameras.


Assuntos
Recém-Nascido Prematuro , Convulsões , Humanos , Lactente , Recém-Nascido , Monitorização Fisiológica/métodos , Movimento (Física) , Convulsões/diagnóstico , Sinais Vitais
4.
Phys Imaging Radiat Oncol ; 20: 111-116, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34917779

RESUMO

BACKGROUND AND PURPOSE: Treatment planning of radiotherapy for locally advanced breast cancer patients can be a time consuming process. Artificial intelligence based treatment planning could be used as a tool to speed up this process and maintain plan quality consistency. The purpose of this study was to create treatment plans for locally advanced breast cancer patients using a Convolutional Neural Network (CNN). MATERIALS AND METHODS: Data of 60 patients treated for left-sided breast cancer was used with a training, validation and test split of 36/12/12, respectively. The in-house built CNN model was a hierarchically densely connected U-net (HD U-net). The inputs for the HD U-net were 2D distance maps of the relevant regions of interest. Dose predictions, generated by the HD U-net, were used for a mimicking algorithm in order to create clinically deliverable plans. RESULTS: Dose predictions were generated by the HD U-net and mimicked using a commercial treatment planning system. The predicted plans fulfilling all clinical goals while showing small (≤0.5 Gy) statistically significant differences (p < 0.05) in the doses compared to the manual plans. The mimicked plans show statistically significant differences in the average doses for the heart and lung of ≤0.5 Gy and a reduced D2% of all PTVs. In total, ten of the twelve mimicked plans were clinically acceptable. CONCLUSIONS: We created a CNN model which can generate clinically acceptable plans for left-sided locally advanced breast cancer patients. This model shows great potential to speed up the treatment planning process while maintaining consistent plan quality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...