Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Conserv Physiol ; 10(1): coac057, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35949258

RESUMO

A minimum stoichiometric carbon and nitrogen model of an entire ecosystem based on Dynamic Energy Budget (DEB) theory is presented. The ecosystem contains nutrients, producers, consumers, decomposers and detritus. All three living groups consist of somatic structure and either one (consumers and decomposers) or two (producers) reserve compartments, hence the living matter is described by seven state variables. Four types of detritus are distinguished. As the system is closed for matter, the dynamics of the nutrients carbon dioxide and ammonium follow automatically from the dynamics of the other 11 state variables. All DEB organisms in the model are V1-morphs, which means that surface area of each organism is proportional to volume. The resulting ontogenetic symmetry implies that complicated modelling of size structure is not required. The DEB V1-morph model is explained in detail, and the same holds for the idea of synthesizing units, which plays a key role in DEB modelling. First results of system dynamics are presented.

2.
PLoS One ; 7(12): e53352, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23285285

RESUMO

In many fisheries multiple species are simultaneously caught while stock assessments and fishing quota are defined at species level. Yet species caught together often share habitat and resources, resulting in interspecific resource competition. The consequences of resource competition on population dynamics and revenue of simultaneously harvested species has received little attention due to the historical single stock approach in fisheries management. Here we present the results of a modelling study on the interaction between resource competition of sole (Solea solea) and slaice (Pleuronectus platessa) and simultaneous harvesting of these species, using a stage-structured population model. Three resources were included of which one is shared with a varied competition intensity. We find that plaice is the better competitor of the two species and adult plaice are more abundant than adult sole. When competition is high sole population biomass increases with increasing fishing effort prior to plaice extinction. As a result of this increase in the sole population, the revenue of the stocks combined as function of effort becomes bimodal with increasing resource competition. When considering a single stock quota for sole, its recovery with increasing effort may result in even more fishing effort that would drive the plaice population to extinction. When sole and plaice compete for resources the highest revenue is obtained at effort levels at which plaice is extinct. Ignoring resource competition promotes overfishing due to increasing stock of one species prior to extinction of the other species. Consequently, efforts to mitigate the decline in one species will not be effective if increased stock in the other species leads to increased quota. If a species is to be protected against extinction, management should not only be directed at this one species, but all species that compete with it for resource as well.


Assuntos
Comportamento Competitivo/fisiologia , Comportamento Alimentar/fisiologia , Pesqueiros/economia , Peixes/fisiologia , Animais , Tamanho Corporal , Comportamento Exploratório/fisiologia , Pesqueiros/métodos , Peixes/crescimento & desenvolvimento , Linguados/crescimento & desenvolvimento , Linguados/fisiologia , Linguado/crescimento & desenvolvimento , Linguado/fisiologia , Cadeia Alimentar , Modelos Biológicos , Esforço Físico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...