Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 60(7): 1995-2002, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33690292

RESUMO

We have developed an SI-traceable narrow-band tunable radiance source based on an optical parametric oscillator (OPO) and an integrating sphere for the calibration of spectroradiometers. The source is calibrated with a reference detector over the ultraviolet/visible spectral range with an uncertainty of <1%. As a case study, a CubeSat spectroradiometer has been calibrated for radiance over its operating range from 370 nm to 480 nm. To validate the results, the instrument has also been calibrated with a traditional setup based on a diffuser and an FEL lamp. Both routes show good agreement within the combined measurement uncertainty. The OPO-based approach could be an interesting alternative to the traditional method, not only because of reduced measurement uncertainty, but also because it directly allows for wavelength calibration and characterization of the instrumental spectral response function and stray light effects, which could reduce calibration time and cost.

2.
Appl Opt ; 56(11): 3077-3086, 2017 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-28414366

RESUMO

Array spectroradiometers are attractive alternatives to scanning spectroradiometers in solar ultraviolet measurements. However, the measurement of solar spectral irradiance imposes stringent requirements for the linearity of the instruments. In this article, two array spectroradiometers were characterized for nonlinearity. Significant nonlinearities, in excess of 10%, as a function of analog-to-digital converter counts were discovered. Additional nonlinearities as a function of integration time were observed at very long integration times. No clear residual nonlinearity as a function of spectral irradiance was witnessed despite the characterization spanning four orders of magnitude of spectral irradiance. The characterizations were carried out with three measurement setups that are briefly compared.

3.
Sci Rep ; 5: 14661, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26419282

RESUMO

Optical frequency combs have developed into powerful tools for distance metrology. In this paper we demonstrate absolute long distance measurement using a single femtosecond frequency comb laser as a multi-wavelength source. By applying a high-resolution spectrometer based on a virtually imaged phased array, the frequency comb modes are resolved spectrally to the level of an individual mode. Having the frequency comb stabilized against an atomic clock, thousands of accurately known wavelengths are available for interferometry. From the spectrally resolved output of a Michelson interferometer a distance is derived. The presented measurement method combines spectral interferometry, white light interferometry and multi-wavelength interferometry in a single scheme. Comparison with a fringe counting laser interferometer shows an agreement within <10(-8) for a distance of 50 m.

4.
Opt Lett ; 36(1): 49-51, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21209683

RESUMO

We demonstrate direct frequency-comb (FC) spectroscopy of the dipole-forbidden 4s(2)S(1/2)-3d(2)D(5/2) transition in trapped (40)Ca(+) ions using an unamplified FC laser. The excitation is detected with nearly 100% efficiency using a shelving scheme in combination with single-ion imaging. The method demonstrated here has the potential to reach hertz-level accuracy, if a hertz-level linewidth FC is used in combination with confinement in the Lamb-Dicke regime.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...