Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomech ; 136: 111073, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35390646

RESUMO

During walking, the center of mass (CoM) position can be controlled relative to the base of support by shifts of the center of pressure through modulation of foot placement and ankle moments (CoP-mechanism). An additional mechanism is the counter-rotation mechanism, i.e. changing the angular momentum of segments around the CoM to change the direction of the ground reaction force. It is unknown if, and how, humans use the counter-rotation mechanism to accelerate the CoM during walking and how this interacts with the CoP-mechanism. Thirteen healthy adults walked on a treadmill, while full-body kinematic and force plate data were obtained. The contributions of the CoP and the counter-rotation mechanisms to CoM-acceleration during steady-state walking, walking on LesSchuh (i.e. constraining mediolateral CoP shifts underneath the stance foot) and walking on LesSchuh at 50% of normal step width, constraining both foot placement and ankle mechanisms (LesSchuh50%) were calculated. The within-stride variance in CoM-acceleration due to the CoP-mechanism was smaller and the within-stride variance in CoM-acceleration due to the counter-rotation mechanism was larger during LesSchuh50% compared to steady-state walking. This suggests that the counter-rotation mechanism is used to stabilize gait when needed, but the CoP-mechanism was the main contributor to the total CoM-acceleration. The use of the counter-rotation mechanism may be limited, because angular accelerations ultimately need to be reversed and because of interference with other task constraints, such as head stabilization and preventing interference with the gait pattern.


Assuntos
Tornozelo , , Adulto , Fenômenos Biomecânicos , Marcha , Humanos , Rotação , Caminhada
2.
Hum Mov Sci ; 82: 102930, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35123153

RESUMO

During standing, posture can be controlled by accelerating the Center of Mass (CoM) through shifting the center of pressure (CoP) within the base of support by applying ankle moments ("CoP mechanism"), or through the "counter-rotation mechanism", i.e., changing the angular momentum of segments around the CoM to change the direction of the ground reaction force. Postural control develops over the lifespan; at both the beginning and the end of the lifespan adequate postural control appears more challenging. In this study, we aimed to assess mediolateral balance performance and the related use of the postural control mechanisms in children, older adults and younger adults when standing on different (unstable) surfaces. Sixteen pre-pubertal children (6-9y), 17 younger adults (18-24y) and eight older adults (65-80y) performed bipedal upright standing trials of 16 s on a rigid surface and on three balance boards that could freely move in the frontal plane, varying in height (15-19 cm) of the surface of the board above the point of contact with the floor. Full body kinematics (16 segments, 48 markers, using SIMI 3D-motion analysis system (GmbH) and DeepLabCut and Anipose) were retrieved. Performance related outcome measures, i.e., the number of trials with balance loss and the Root Mean Square (RMS) of the time series of the CoM acceleration, the contributions of the CoP mechanism and the counter-rotation mechanism to the CoM acceleration in the frontal plane and selected kinematic measures, i.e. the orientation of the board and the head and the Mean Power Frequency (MPF) of the balance board orientation and the CoM acceleration were determined. Balance loss only occurred when standing on the highest balance board, twice in one older adult once in one younger adult. In children and older adults, the RMS of the CoM accelerations were larger, corresponding to poorer balance performance. Across age groups and conditions, the contribution of the CoP mechanism to the total CoM acceleration was much larger than that of the counter-rotation mechanisms, ranging from 94% to 113% vs 23% to 38% (with totals higher than 100% indicating opposite effects of both mechanisms). Deviations in head orientation were small compared to deviations in balance board orientation. We suggest that the CoP mechanism is dominant, since the counter-rotation mechanism would conflict with stabilizing the orientation of the head in space.


Assuntos
Equilíbrio Postural , Postura , Aceleração , Idoso , Fenômenos Biomecânicos , Criança , Humanos , Posição Ortostática
4.
J Biomech ; 103: 109660, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32171496

RESUMO

Shifts of the center of pressure (CoP) through modulation of foot placement and ankle moments (CoP-mechanism) cause accelerations of the center of mass (CoM) that can be used to stabilize gait. An additional mechanism that can be used to stabilize gait, is the counter-rotation mechanism, i.e., changing the angular momentum of segments around the CoM to change the direction of the ground reaction force. The relative contribution of these mechanisms to the control of the CoM is unknown. Therefore, we aimed to determine the relative contribution of these mechanisms to control the CoM in the anteroposterior (AP) direction during a normal step and the first recovery step after perturbation in healthy adults. Nineteen healthy subjects walked on a split-belt treadmill and received unexpected belt acceleration perturbations of various magnitudes applied immediately after right heel-strike. Full-body kinematic and force plate data were obtained to calculate the contributions of the CoP-mechanism and the counter-rotation mechanism to control the CoM. We found that the CoP-mechanism contributed to corrections of the CoM acceleration after the AP perturbations, while the counter-rotation mechanism actually counteracted the CoM acceleration after perturbation, but only in the initial phases of the first step after the perturbation. The counter-rotation mechanism appeared to prevent interference with the gait pattern, rather than using it to control the CoM after the perturbation. Understanding the mechanisms used to stabilize gait may have implications for the design of therapeutic interventions that aim to decrease fall incidence.


Assuntos
Marcha , Caminhada , Adulto , Fenômenos Biomecânicos , Teste de Esforço , , Humanos , Equilíbrio Postural
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...