Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Basic Res Cardiol ; 119(2): 309-327, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38305903

RESUMO

Statins are effective drugs in reducing cardiovascular morbidity and mortality by inhibiting cholesterol synthesis. These effects are primarily beneficial for the patient's vascular system. A significant number of statin users suffer from muscle complaints probably due to mitochondrial dysfunction, a mechanism that has recently been elucidated. This has raised our interest in exploring the effects of statins on cardiac muscle cells in an era where the elderly and patients with poorer functioning hearts and less metabolic spare capacity start dominating our patient population. Here, we investigated the effects of statins on human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-derived CMs). hiPSC-derived CMs were exposed to simvastatin, atorvastatin, rosuvastatin, and cerivastatin at increasing concentrations. Metabolic assays and fluorescent microscopy were employed to evaluate cellular viability, metabolic capacity, respiration, intracellular acidity, and mitochondrial membrane potential and morphology. Over a concentration range of 0.3-100 µM, simvastatin lactone and atorvastatin acid showed a significant reduction in cellular viability by 42-64%. Simvastatin lactone was the most potent inhibitor of basal and maximal respiration by 56% and 73%, respectively, whereas simvastatin acid and cerivastatin acid only reduced maximal respiration by 50% and 42%, respectively. Simvastatin acid and lactone and atorvastatin acid significantly decreased mitochondrial membrane potential by 20%, 6% and 3%, respectively. The more hydrophilic atorvastatin acid did not seem to affect cardiomyocyte metabolism. This calls for further research on the translatability to the clinical setting, in which a more conscientious approach to statin prescribing might be considered, especially regarding the current shift in population toward older patients with poor cardiac function.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Células-Tronco Pluripotentes Induzidas , Sinvastatina/análogos & derivados , Humanos , Idoso , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Miócitos Cardíacos/metabolismo , Atorvastatina/farmacologia , Sinvastatina/farmacologia , Mitocôndrias/metabolismo , Lactonas/metabolismo , Lactonas/farmacologia , Concentração de Íons de Hidrogênio
2.
Curr Res Toxicol ; 6: 100149, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38292667

RESUMO

Tofacitinib is a small molecule Janus kinase (JAK) inhibitor, introduced to the European market in 2017, for the treatment of rheumatoid arthritis, psoriatic arthritis and ulcerative colitis. In the treatment of women with autoimmune diseases, pregnancy is a relevant issue, as such diseases typically affect women in their reproductive years. Currently, there is limited data on the use of tofacitinib during pregnancy. To estimate the extent of placental transfer in the absence of clinical data, we conducted ex vivo dual-side perfused human placental cotyledon perfusions. Term placentas were perfused for 180 min with tofacitinib (100 nM, added to the maternal circuit) in a closed-closed configuration. At the end of the perfusions, drug concentrations in the maternal and fetal reservoirs were near equilibrium, at 35.6 ± 5.5 and 24.8 ± 4.7 nM, respectively. Transfer of tofacitinib was similar to that observed for the passive diffusion marker antipyrine (100 µg/mL, added to the maternal reservoir). Final antipyrine maternal and fetal concentrations amounted to 36.9 ± 3.0 and 36.7 ± 1.3 µg/mL, respectively. In conclusion, in the ex vivo perfused placenta tofacitinib traverses the placental barrier rapidly and extensively. This suggests that substantial fetal tofacitinib exposure will take place after maternal drug dosing.

3.
Antibiotics (Basel) ; 12(4)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37107064

RESUMO

Linezolid is used off-label for treatment of central nervous system infections. However, its pharmacokinetics and target attainment in cranial cerebrospinal fluid (CSF) in tuberculous meningitis patients is unknown. This study aimed to predict linezolid cranial CSF concentrations and assess attainment of pharmacodynamic (PD) thresholds (AUC:MIC of >119) in plasma and cranial CSF of adults and children with tuberculous meningitis. A physiologically based pharmacokinetic (PBPK) model was developed to predict linezolid cranial CSF profiles based on reported plasma concentrations. Simulated steady-state PK curves in plasma and cranial CSF after linezolid doses of 300 mg BID, 600 mg BID, and 1200 mg QD in adults resulted in geometric mean AUC:MIC ratios in plasma of 118, 281, and 262 and mean cranial CSF AUC:MIC ratios of 74, 181, and 166, respectively. In children using ~10 mg/kg BID linezolid, AUC:MIC values at steady-state in plasma and cranial CSF were 202 and 135, respectively. Our model predicts that 1200 mg per day in adults, either 600 mg BID or 1200 mg QD, results in reasonable (87%) target attainment in cranial CSF. Target attainment in our simulated paediatric population was moderate (56% in cranial CSF). Our PBPK model can support linezolid dose optimization efforts by simulating target attainment close to the site of TBM disease.

4.
Toxicol In Vitro ; 80: 105327, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35134484

RESUMO

Tumor necrosis factor (TNF) regulates trophoblast turnover during the formation of the placental syncytium and can be a potentially relevant target for adverse effects of xenobiotics. We mimicked syncytialization in vitro by stimulating BeWo cells with 50 µM forskolin. Undifferentiated and syncytialized BeWo cells were exposed to TNF (10 pg/mL-10 ng/mL) for 48 h after which cell viability, progesterone release and gene expression of a selected set of markers representative for placental function were assessed. In undifferentiated BeWo cells, high TNF levels (1-10 ng/mL) increased gene expression of TNF, NF-κB, and TNFRSF1B to maximally 99 ± 17, 2.2 ± 0.2, and 3.0 ± 0.4 of control values, respectively (p < 0.001). These effects were also found in syncytialized BeWo cells but less pronounced. Additionally, TNF may induce syncytialization in BeWo cells as it upregulated ERVW-1 expression by 1.55 ± 0.14-fold (p < 0.05). On the contrary, TNF levels of 10 and 100 pg/mL did not affect gene expression in both undifferentiated and syncytialized BeWo cells, but did enhance cell viability in syncytialised BeWo cells (p < 0.001). In conclusion, we found that high TNF levels (1-10 ng/mL) increased gene expression of TNF, NF-κB, and TNFRSF1B especially in undifferentiated BeWo cells, while physiological TNF concentrations positively affected cell viability and while there was no effect on any of the investigated functional markers.


Assuntos
Trofoblastos/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Colforsina/farmacologia , Feminino , Expressão Gênica , Humanos , Gravidez , Progesterona/metabolismo , Trofoblastos/metabolismo
5.
J Clin Pharmacol ; 62(3): 385-396, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34554580

RESUMO

Moxifloxacin has an important role in the treatment of tuberculosis (TB). Unfortunately, coadministration with the cornerstone TB drug rifampicin results in suboptimal plasma exposure. We aimed to gain insight into the moxifloxacin pharmacokinetics and the interaction with rifampicin. Moreover, we provided a mechanistic framework to understand moxifloxacin pharmacokinetics. We developed a physiologically based pharmacokinetic model in Simcyp version 19, with available and newly generated in vitro and in vivo data, to estimate pharmacokinetic parameters of moxifloxacin alone and when administered with rifampicin. By combining these strategies, we illustrate that the role of P-glycoprotein in moxifloxacin transport is limited and implicate MRP2 as transporter of moxifloxacin-glucuronide followed by rapid hydrolysis in the gut. Simulations of multiple dose area under the plasma concentration-time curve (AUC) of moxifloxacin (400 mg once daily) with and without rifampicin (600 mg once daily) were in accordance with clinically observed data (predicted/observed [P/O] ratio of 0.87 and 0.80, respectively). Importantly, increasing the moxifloxacin dose to 600 mg restored the plasma exposure both in actual patients with TB as well as in our simulations. Furthermore, we extrapolated the single dose model to pediatric populations (P/O AUC ratios, 1.04-1.52) and the multiple dose model to children with TB (P/O AUC ratio, 1.51). In conclusion, our combined approach resulted in new insights into moxifloxacin pharmacokinetics and accurate simulations of moxifloxacin exposure with and without rifampicin. Finally, various knowledge gaps were identified, which may be considered as avenues for further physiologically based pharmacokinetic refinement.


Assuntos
Antituberculosos/farmacologia , Moxifloxacina/farmacocinética , Rifampina/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/efeitos dos fármacos , Adulto , Antituberculosos/farmacocinética , Área Sob a Curva , Criança , Quimioterapia Combinada , Glucuronosiltransferase/metabolismo , Células HEK293 , Humanos , Modelos Biológicos , Proteína 2 Associada à Farmacorresistência Múltipla/metabolismo
6.
Br J Clin Pharmacol ; 87(4): 2128-2131, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32986871

RESUMO

Eculizumab is known to cross the placenta to a limited degree, but recently therapeutic drug levels in cord blood were found in a single case. We report maternal, cord and placental levels of unbound eculizumab, C5 and C5-eculizumab in two pregnancies of a paroxysmal nocturnal haemoglobinuria patient who received 900 mg eculizumab every 2 weeks. In both pregnancies, cord blood concentrations of unbound eculizumab were below 4 µg/mL, while C5-eculizumab levels were 22 and 26 µg/mL, suggesting that a considerable fraction of C5 was blocked in the newborn. Concentrations in each placenta of unbound eculizumab were 41 ± 3 and 45 ± 4 µg/g tissue, of C5-eculizumab 19 ± 2 and 32 ± 3 µg/g, and of C5 20 ± 3 and 30 ± 2 µg/g (mean ± SD, in three tissue samples per placenta). Placental levels of unbound eculizumab were higher than those of C5-eculizumab complexes, while maternal concentrations were approximately equal, suggesting selective transport of unbound eculizumab across the placenta.


Assuntos
Hemoglobinúria Paroxística , Anticorpos Monoclonais Humanizados , Feminino , Hemoglobinúria Paroxística/tratamento farmacológico , Humanos , Recém-Nascido , Placenta , Gravidez
7.
Arch Toxicol ; 95(2): 557-571, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33083868

RESUMO

The application of anticancer drugs during pregnancy is associated with placenta-related adverse pregnancy outcomes. Therefore, it is important to study placental toxicity of anticancer drugs. The aim of this study was to compare effects on viability and steroidogenesis in placental tissue explants and trophoblast cell lines. Third trimester placental tissue explants were exposed for 72 h (culture day 4-7) to a concentration range of doxorubicin, paclitaxel, cisplatin, carboplatin, crizotinib, gefitinib, imatinib, or sunitinib. JEG-3, undifferentiated BeWo, and syncytialised BeWo cells were exposed for 48 h to the same drugs and concentrations. After exposure, tissue and cell viability were assessed and progesterone and estrone levels were quantified in culture medium. Apart from paclitaxel, all compounds affected both cell and tissue viability at clinically relevant concentrations. Paclitaxel affected explant viability moderately, while it reduced cell viability by 50% or more in all cell lines, at 3-10 nM. Doxorubicin (1 µM) reduced viability in explants to 83 ± 7% of control values, whereas it fully inhibited viability in all cell types. Interference with steroid release in explants was difficult to study due to large variability in measurements, but syncytialised BeWo cells proved suitable for this purpose. We found that 1 µM sunitinib reduced progesterone release to 76 ± 6% of control values, without affecting cell viability. While we observed differences between the models for paclitaxel and doxorubicin, most anticancer drugs affected viability significantly in both placental explants and trophoblast cell lines. Taken together, the placenta should be recognized as a potential target organ for toxicity of anticancer drugs.


Assuntos
Antineoplásicos/toxicidade , Estrona/análise , Placenta/efeitos dos fármacos , Progesterona/análise , Trofoblastos/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular , Células Cultivadas , Citostáticos/toxicidade , Feminino , Humanos , Gravidez , Terceiro Trimestre da Gravidez/efeitos dos fármacos
8.
Biochim Biophys Acta Mol Basis Dis ; 1866(6): 165727, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32070771

RESUMO

Mitochondrial complex I (CI), the first multiprotein enzyme complex of the OXPHOS system, executes a major role in cellular ATP generation. Consequently, dysfunction of this complex has been linked to inherited metabolic disorders, including Leigh disease (LD), an often fatal disease in early life. Development of clinical effective treatments for LD remains challenging due to the complex pathophysiological nature. Treatment with the peroxisome proliferation-activated receptor (PPAR) agonist bezafibrate improved disease phenotype in several mitochondrial disease mouse models mediated via enhanced mitochondrial biogenesis and fatty acid ß-oxidation. However, the therapeutic potential of this mixed PPAR (α, δ/ß, γ) agonist is severely hampered by hepatotoxicity, which is possibly caused by activation of PPARγ. Here, we aimed to investigate the effects of the PPARα-specific fibrate clofibrate in mitochondrial CI-deficient (Ndufs4-/-) mice. Clofibrate increased lifespan and motor function of Ndufs4-/- mice, while only marginal hepatotoxic effects were observed. Due to the complex clinical and cellular phenotype of CI-deficiency, we also aimed to investigate the therapeutic potential of clofibrate combined with the redox modulator KH176. As described previously, single treatment with KH176 was beneficial, however, combining clofibrate with KH176 did not result in an additive effect on disease phenotype in Ndufs4-/- mice. Overall, both drugs have promising, but independent and nonadditive, properties for the pharmacological treatment of CI-deficiency-related mitochondrial diseases.


Assuntos
Cromanos/farmacologia , Clofibrato/farmacologia , Complexo I de Transporte de Elétrons/deficiência , Longevidade/efeitos dos fármacos , Doenças Mitocondriais/tratamento farmacológico , Trifosfato de Adenosina/metabolismo , Animais , Bezafibrato/farmacologia , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Ácidos Graxos/metabolismo , Humanos , Doença de Leigh/tratamento farmacológico , Doença de Leigh/metabolismo , Doença de Leigh/patologia , Camundongos , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Atividade Motora/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Receptores Ativados por Proliferador de Peroxissomo/agonistas , Receptores Ativados por Proliferador de Peroxissomo/genética
9.
Eur J Clin Invest ; 49(12): e13180, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31659743

RESUMO

BACKGROUND: Patients with primary aldosteronism (PA) experience more cardiovascular events compared to patients with essential hypertension (EHT), independent from blood pressure levels. In animals, mineralocorticoid receptor antagonists limit ischaemia-reperfusion (IR) injury by increasing extracellular adenosine formation and adenosine receptor stimulation. Adenosine is an endogenous compound with profound cardiovascular protective effects. Firstly, we hypothesized that patients with PA have lower circulating adenosine levels which might contribute to the observed increased cardiovascular risk. Secondly, we hypothesized that by this mechanism, patients with PA are more susceptible to IR compared to patients with EHT. DESIGN: In our prospective study in 20 patients with PA and 20 patients with EHT, circulating adenosine was measured using a pharmacological blocker solution that halts adenosine metabolism after blood drawing. Brachial artery flow-mediated dilation (FMD) before and after forearm IR was used as a well-established method to study IR injury. RESULTS: Patients with PA had a 33% lower adenosine level compared to patients with EHT (15.3 [13.3-20.4] vs 22.7 [19.4-36.8] nmol/L, respectively, P < .01). The reduction in FMD after IR, however, did not differ between patients with PA and patients with EHT (-1.0 ± 2.9% vs -1.6 ± 1.6%, respectively, P = .52). CONCLUSIONS: As adenosine receptor stimulation induces various powerful protective cardiovascular effects, its lower concentration in patients with PA might be an important novel mechanism that contributes to their increased cardiovascular risk. We suggest that modulation of the adenosine metabolism is an exciting novel pharmacological opportunity to limit cardiovascular risk in patients with PA that needs further exploration.


Assuntos
Adenosina/sangue , Artéria Braquial/fisiopatologia , Hipertensão Essencial/sangue , Hiperaldosteronismo/sangue , Traumatismo por Reperfusão/fisiopatologia , Vasodilatação/fisiologia , Adulto , Estudos de Casos e Controles , Hipertensão Essencial/fisiopatologia , Feminino , Antebraço , Humanos , Hiperaldosteronismo/fisiopatologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
11.
Eur J Pharm Sci ; 115: 175-184, 2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29309877

RESUMO

Drug-induced liver injury (DILI) is a common reason for drug withdrawal from the market. An important cause of DILI is drug-induced cholestasis. One of the major players involved in drug-induced cholestasis is the bile salt efflux pump (BSEP; ABCB11). Inhibition of BSEP by drugs potentially leads to cholestasis due to increased (toxic) intrahepatic concentrations of bile acids with subsequent cell injury. In order to investigate the possibilities for in silico prediction of cholestatic effects of drugs, we developed a mechanistic biokinetic model for human liver bile acid handling populated with human in vitro data. For this purpose we considered nine groups of bile acids in the human bile acid pool, i.e. chenodeoxycholic acid, deoxycholic acid, the remaining unconjugated bile acids and the glycine and taurine conjugates of each of the three groups. Michaelis-Menten kinetics of the human uptake transporter Na+-taurocholate cotransporting polypeptide (NTCP; SLC10A1) and BSEP were measured using NTCP-transduced HEK293 cells and membrane vesicles from BSEP-overexpressing HEK293 cells. For in vitro-in vivo scaling, transporter abundance was determined by LC-MS/MS in these HEK293 cells and vesicles as well as in human liver tissue. Other relevant human kinetic parameters were collected from literature, such as portal bile acid levels and composition, bile acid synthesis and amidation rate. Additional empirical scaling was applied by increasing the excretion rate with a factor 2.4 to reach near physiological steady-state intracellular bile acid concentrations (80µM) after exposure to portal vein bile acid levels. Simulations showed that intracellular bile acid concentrations increase 1.7 fold in the presence of the BSEP inhibitors and cholestatic drugs cyclosporin A or glibenclamide, at intrahepatic concentrations of 6.6 and 20µM, respectively. This simplified model provides a tool for a first indication whether drugs at therapeutic concentrations might cause cholestasis by inhibiting BSEP.


Assuntos
Ácidos e Sais Biliares/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Colestase/induzido quimicamente , Colestase/metabolismo , Fígado/metabolismo , Preparações Farmacêuticas/metabolismo , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transporte Biológico/efeitos dos fármacos , Linhagem Celular , Células HEK293 , Humanos , Cinética , Proteínas de Membrana Transportadoras/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Simportadores/metabolismo
12.
PLoS One ; 11(12): e0168117, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28033375

RESUMO

BACKGROUND: To date, over 150 possible uremic solutes have been listed, but their role in the progression of CKD is largely unknown. Here, the association between a selected panel of uremic solutes and progression in CKD patients was investigated. METHODS: Patients from the MASTERPLAN study, a randomized controlled trial in CKD patients with a creatinine clearance between 20 and 70 ml/min per 1.73m2, were selected based on their rate of eGFR decline during the first five years of follow-up. They were categorized as rapid (decline >5 ml/min per year) or slow progressors. Concentrations of eleven uremic solutes were obtained at baseline and after one year of follow-up. Logistic regression was used to compare the odds for rapid to slow progression by uremic solute concentrations at baseline. Variability in uremic solute levels was assessed using scatter plots, and limits of variability were calculated. RESULTS: In total, 40 rapidly and 40 slowly progressing patients were included. Uremic solutes were elevated in all patients compared to reference values for healthy persons. The serum levels of uremic solutes were not associated with rapid progression. Moreover, we observed substantial variability in solute levels over time. CONCLUSIONS: Elevated concentrations of uremic solutes measured in this study did not explain differences in rate of eGFR decline in CKD patients, possibly due to lack of power as a result of the small sample size, substantial between patient variability, and variability in solute concentrations over time. The etiology of intra-individual variation in uremic solute levels remains to be elucidated.


Assuntos
Testes de Função Renal/métodos , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/patologia , Uremia/sangue , Idoso , Estudos de Casos e Controles , Cromatografia Líquida , Creatinina/sangue , Progressão da Doença , Feminino , Taxa de Filtração Glomerular/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Espectrometria de Massas em Tandem
13.
PLoS One ; 10(10): e0140820, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26469515

RESUMO

Although there has been increasing interest in the use of high protein diets, little is known about dietary protein related changes in the mammalian metabolome. We investigated the influence of protein intake on selected tryptophan and phenolic compounds, derived from both endogenous and colonic microbial metabolism. Furthermore, potential inter-species metabolic differences were studied. For this purpose, 29 healthy subjects were allocated to a high (n = 14) or low protein diet (n = 15) for 2 weeks. In addition, 20 wild-type FVB mice were randomized to a high protein or control diet for 21 days. Plasma and urine samples were analyzed with liquid chromatography-mass spectrometry for measurement of tryptophan and phenolic metabolites. In human subjects, we observed significant changes in plasma level and urinary excretion of indoxyl sulfate (P 0.004 and P 0.001), and in urinary excretion of indoxyl glucuronide (P 0.01), kynurenic acid (P 0.006) and quinolinic acid (P 0.02). In mice, significant differences were noted in plasma tryptophan (P 0.03), indole-3-acetic acid (P 0.02), p-cresyl glucuronide (P 0.03), phenyl sulfate (P 0.004) and phenylacetic acid (P 0.01). Thus, dietary protein intake affects plasma levels and generation of various mammalian metabolites, suggesting an influence on both endogenous and colonic microbial metabolism. Metabolite changes are dissimilar between human subjects and mice, pointing to inter-species metabolic differences with respect to protein intake.


Assuntos
Proteínas Alimentares/farmacologia , Ingestão de Alimentos/fisiologia , Fenóis/metabolismo , Triptofano/metabolismo , Adulto , Animais , Dieta , Feminino , Humanos , Masculino , Camundongos , Fenóis/sangue , Fenóis/urina , Projetos Piloto , Triptofano/sangue , Triptofano/urina , Adulto Jovem
14.
Toxicol In Vitro ; 29(7): 1868-77, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26216510

RESUMO

The uremic solutes p-cresyl sulfate (pCS) and p-cresyl glucuronide (pCG) accumulate in patients with chronic kidney disease (CKD), and might contribute to disease progression. Moreover, retention of these solutes may directly be related to renal tubular function. Here, we investigated the role of the efflux transporters Multidrug Resistance Protein 4 (MRP4) and Breast Cancer Resistance Protein (BCRP) in pCS and pCG excretion, and studied the impact of both solutes on the phenotype of human conditionally immortalized renal proximal tubule epithelial cells (ciPTEC). Our results show that p-cresol metabolites accumulate during CKD, with a shift from sulfation to glucuronidation upon progression. Moreover, pCS inhibited the activity of MRP4 by 40% and BCRP by 25%, whereas pCG only reduced MRP4 activity by 75%. Moreover, BCRP-mediated transport of both solutes was demonstrated. Exposure of ciPTEC to pCG caused epithelial-to-mesenchymal transition, indicated by increased expression of vimentin and Bcl-2, and diminished E-cadherin. This was associated with altered expression of key tubular transporters. In conclusion, BCRP is likely involved in the renal excretion of both solutes, and pCG promotes phenotypical changes in ciPTEC, supporting the notion that uremic toxins may be involved in CKD progression by negatively affecting renal tubule cell phenotype and functionality.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Cresóis/metabolismo , Glucuronídeos/metabolismo , Túbulos Renais Proximais/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Ésteres do Ácido Sulfúrico/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Adulto , Idoso , Baculoviridae/genética , Linhagem Celular , Feminino , Células HEK293 , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas de Neoplasias/genética , Eliminação Renal , Insuficiência Renal Crônica/metabolismo , Transdução Genética
15.
J Hypertens ; 33(10): 2075-82, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26203967

RESUMO

BACKGROUND: Tyrosine kinase inhibitors targeting angiogenesis have become an important part of the treatment of patients with several types of cancer. One of the most reported side effects of vascular endothelial growth factor receptor (VEGFR)-targeted therapies is hypertension. In this study, we hypothesized that the development of hypertension in patients treated with sunitinib, a multitargeted tyrosine kinase inhibitor, is preceded by reduced endothelium-dependent vasodilation. Moreover, we hypothesized that this endothelial dysfunction is a result of impaired nitric oxide release. METHOD: In a placebo-controlled experiment, we determined vascular responses in isolated mesenteric arteries of rats (n = 26) after 7 days of sunitinib treatment. RESULTS: Sunitinib reduced endothelium-dependent vasodilation, but not endothelium-independent vasodilation. Moreover, we observed that the difference in endothelium-dependent vasodilation between controls and sunitinib-treated animals disappeared in the presence of N-nitro-L-arginine methyl ester (L-NAME), a nitric oxide antagonist. In patients with metastatic renal cell carcinoma, before and 1 week after start of sunitinib, the endothelium-dependent vasodilator response to intra-arterial acetycholine and the endothelium-independent vasodilator response to intra-arterial sodium nitroprusside was assessed with venous occlusion plethysmography. No changes in forearm blood flow ratios were observed. Mean arterial pressure did significantly increase from 101.9 ±â€Š3.8 to 106.1 ±â€Š2.6 mmHg after 1 week and further to 115.8 (±4.9) mmHg after 2 weeks of treatment. CONCLUSION: In animals, this study confirms that exposure to high concentrations of sunitinib reduces endothelium-dependent vasodilation by reducing endothelial release of nitric oxide. In humans, however, reduced endothelium-dependent vasodilation does not precede the development of hypertension in patients treated with sunitinib.


Assuntos
Inibidores da Angiogênese/farmacologia , Carcinoma de Células Renais/tratamento farmacológico , Endotélio Vascular/efeitos dos fármacos , Hipertensão/fisiopatologia , Indóis/farmacologia , Neoplasias Renais/tratamento farmacológico , Pirróis/farmacologia , Vasodilatação/efeitos dos fármacos , Acetilcolina/farmacologia , Adulto , Idoso , Inibidores da Angiogênese/efeitos adversos , Animais , Endotélio Vascular/fisiopatologia , Antebraço/irrigação sanguínea , Humanos , Hipertensão/induzido quimicamente , Indóis/efeitos adversos , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Pessoa de Meia-Idade , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/metabolismo , Nitroprussiato/farmacologia , Pirróis/efeitos adversos , Ratos , Fluxo Sanguíneo Regional/efeitos dos fármacos , Sunitinibe , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Vasodilatadores/farmacologia
16.
PLoS One ; 9(4): e96062, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24755906

RESUMO

INTRODUCTION: Large prospective studies in patients with type 2 diabetes mellitus have demonstrated that metformin treatment improves cardiovascular prognosis, independent of glycemic control. Administration of metformin potently limits infarct size in murine models of myocardial infarction. This study examined, for the first time in humans, whether metformin limits ischemia-reperfusion (IR) injury in vivo using a well-validated forearm model of endothelial IR-injury. METHODS: Twenty-eight healthy volunteers (age 41±6 years, 10 male/16 female) were randomized between pretreatment with metformin (500 mg three times a day for 3 days) or no treatment in a Prospective Randomized Open Blinded Endpoint study. Brachial artery flow mediated dilation (FMD) was measured before and after 20 minutes of forearm ischemia and 20 minutes of reperfusion. FMD analysis was performed offline by investigators blinded for the treatment arm. RESULTS: Baseline FMD did not differ between metformin pretreatment and no pretreatment (6.9±3.6% and 6.1±3.5%, respectively, p = 0.27, n = 26). FMD was significantly lower after forearm IR in both treatment arms (4.4±3.3% and 4.3±2.8%, respectively, P<0.001 in both conditions). A linear mixed model analysis revealed that metformin treatment did not prevent the decrease in FMD by IR. CONCLUSION: A 3 day treatment with metformin in healthy, middle-aged subjects does not protect against endothelial IR-injury, measured with brachial artery FMD after forearm ischemia. Further studies are needed to clarify what mechanism underlies the cardiovascular benefit of metformin treatment. TRIAL REGISTRATION: ClinicalTrials.gov NCT01610401.


Assuntos
Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico , Traumatismo por Reperfusão/prevenção & controle , Adulto , Artéria Braquial/efeitos dos fármacos , Artéria Braquial/fisiopatologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/patologia , Feminino , Antebraço/irrigação sanguínea , Humanos , Hipoglicemiantes/farmacocinética , Hipoglicemiantes/farmacologia , Masculino , Metformina/farmacocinética , Metformina/farmacologia , Pessoa de Meia-Idade , Estudos Prospectivos , Fluxo Sanguíneo Regional , Método Simples-Cego
17.
Transl Res ; 164(1): 46-56, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24486136

RESUMO

Mycophenolic acid (MPA) is an immunosuppressant used in transplant rejection, often in combination with cyclosporine (CsA) and tacrolimus (Tac). The drug is cleared predominantly via the kidneys, and 95% of the administered dose appears in urine as 7-hydroxy mycophenolic acid glucuronide (MPAG). The current study was designed to unravel the renal excretory pathway of MPA and MPAG, and their potential drug-drug interactions. The role of multidrug resistance protein (MRP) 2 and MRP4 in MPA disposition was studied using human embryonic kidney 293 (HEK293) cells overexpressing the human transporters, and in isolated, perfused kidneys of Mrp2-deficient rats and Mrp4-deficient mice. Using these models, we identified MPA as substrate of MRP2 and MRP4, whereas its MPAG appeared to be a substrate of MRP2 only. CsA inhibited MPAG transport via MRP2 for 50% at 8 µM (P < 0.05), whereas Tac had no effect. This was confirmed by cell survival assays, showing a 10-fold increase in MPA cytotoxicity (50% reduction in cell survival changed from 12.2 ± 0.3 µM to 1.33 ± 0.01 µM by MPA + CsA; P < 0.001) and in perfused kidneys, showing a 50% reduction in MPAG excretion (P < 0.05). The latter effect was observed in Mrp2-deficient animals as well, supporting the importance of Mrp2 in MPAG excretion. CsA, but not Tac, inhibited MPA glucuronidation by rat kidney homogenate and human uridine 5'-diphospho-glucuronosyltransferase-glucuronosyltransferase 1A9 (P < 0.05 and P < 0.01, respectively). We conclude that MPA is a substrate of both MRP2 and MRP4, but MRP2 is the main transporter involved in renal MPAG excretion. In conclusion, CsA, but not Tac, influences MPA clearance by inhibiting renal MPA glucuronidation and MRP2-mediated MPAG secretion.


Assuntos
Ciclosporina/farmacocinética , Rim/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Ácido Micofenólico/farmacocinética , Tacrolimo/farmacocinética , Animais , Ciclosporina/metabolismo , Interações Medicamentosas , Regulação da Expressão Gênica/efeitos dos fármacos , Glucuronídeos/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Knockout , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Ácido Micofenólico/metabolismo , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar , Tacrolimo/metabolismo
18.
Crit Care Med ; 40(9): 2609-16, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22732294

RESUMO

OBJECTIVE: Adenosine modulates inflammation and prevents associated organ injury by activation of its receptors. During sepsis, the extracellular adenosine concentration increases rapidly, but the underlying mechanism in humans is unknown. We aimed to determine the changes in adenosine metabolism and signaling both in vivo during experimental human endotoxemia and in vitro. DESIGN: We studied subjects participating in three different randomized double-blind placebo-controlled trials. In order to prevent confounding by the different pharmacological interventions in these trials, analyses were performed on data of placebo-treated subjects only. SETTING: Intensive care research unit at the Radboud University Nijmegen Medical Center. SUBJECTS: In total, we used material of 24 healthy male subjects. INTERVENTIONS: Subjects received 2 ng/kg Escherichia coli endotoxin (lipopolysaccharide) intravenously. MEASUREMENTS AND MAIN RESULTS: Following experimental endotoxemia, endogenous adenosine concentrations increased. Expression of 5'ectonucleotidase messenger RNA was upregulated (p = .01), whereas adenosine deaminase messenger RNA was downregulated (p = .02). Furthermore, both adenosine deaminase and adenosine kinase activity was significantly diminished (both p ≤ .0001). A2a and A2b receptor messenger RNA expression was elevated (p = .02 and p = .04, respectively), whereas messenger RNA expression of A1 and A3 receptors was reduced (both, p = .03). In vitro, lipopolysaccharide dose-dependently attenuated the activity of both adenosine deaminase and adenosine kinase (both p ≤ .0001). CONCLUSIONS: Adenosine metabolism and signaling undergo adaptive changes during human experimental endotoxemia promoting higher levels of adenosine thereby facilitating its inflammatory signaling.


Assuntos
Adenosina/metabolismo , Citocinas/metabolismo , Endotoxemia/metabolismo , Endotoxinas , Receptores Purinérgicos P1/metabolismo , Adenosina/análise , Análise de Variância , Células Cultivadas , Regulação para Baixo , Endotoxemia/sangue , Regulação da Expressão Gênica , Experimentação Humana , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos/farmacologia , Linfócitos , Masculino , RNA Mensageiro/análise , Reação em Cadeia da Polimerase em Tempo Real , Receptores Purinérgicos P1/genética , Valores de Referência , Estudos de Amostragem , Síndrome de Resposta Inflamatória Sistêmica/metabolismo , Síndrome de Resposta Inflamatória Sistêmica/fisiopatologia , Adulto Jovem
19.
Drug Metab Dispos ; 40(6): 1076-9, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22415933

RESUMO

Coumarin (1,2-benzopyrone) is a natural compound that has been used as a fragrance in the food and perfume industry and could have therapeutic usefulness in the treatment of lymphedema and different types of cancer. Several previous pharmacokinetic studies of coumarin have been performed in humans, which revealed extensive first-pass metabolism of the compound. 7-Hydroxycoumarin (7-HC) and its glucuronide (7-HC-G) are the main metabolites formed in humans, and via this route, 80 to 90% of the absorbed coumarin is excreted into urine, mainly as 7-HC-G. Active transport processes play a role in the urinary excretion of 7-HC-G; however, until now, the transporters involved remained to be elucidated. In this study, we investigated whether the efflux transporters multidrug resistance-associated proteins (MRP)1-4, breast cancer resistance protein, or P-glycoprotein play a role in 7-HC and 7-HC-G transport. For this purpose, we measured uptake of the metabolites into membrane vesicles overexpressing these transporters. Our results showed that 7-HC is not transported by any of the efflux transporters tested, whereas 7-HC-G was a substrate of MRP3 and MRP4. These results are in line with the pharmacokinetic profile of coumarin and suggest that MRP3 and MRP4 are the main transporters involved in the excretion of the coumarin metabolite 7-HC-G from liver and kidney.


Assuntos
Cumarínicos/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/fisiologia , Umbeliferonas/metabolismo , Transporte Biológico Ativo/fisiologia , Células HEK293 , Humanos
20.
Mol Pharm ; 9(5): 1351-60, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22428727

RESUMO

Although the CB1 receptor antagonist/inverse agonist rimonabant has positive effects on weight loss and cardiometabolic risk factors, neuropsychiatric side effects have prompted researchers to develop peripherally acting derivatives. Here, we investigated for a series of 3,4-diarylpyrazoline CB1 receptor antagonists if transport by the brain efflux transporter P-gp could be used as a selection criterion in the development of such drugs. All 3,4-diarylpyrazolines and rimonabant inhibited P-gp transport activity in membrane vesicles isolated from HEK293 cells overexpressing the transporter, but only the 1,1-dioxo-thiomorpholino analogue 23 exhibited a reduced accumulation (-38 ± 2%) in these cells, which could be completely reversed by the P-gp/BCRP inhibitor elacridar. In addition, 23 appeared to be a BCRP substrate, whereas rimonabant was not. In rats, the in vivo brain/plasma concentration ratio of 23 was significantly lower than for rimonabant (0.4 ± 0.1 vs 6.2 ± 1.6, p < 0.001). Coadministration of elacridar resulted in an 11-fold increase of the brain/plasma ratio for 23 (p < 0.01) and only 1.4-fold for rimonabant (p < 0.05), confirming the involvement of P-gp and possibly BCRP in limiting the brain entrance of 23 in vivo. In conclusion, these data support the conception that efflux via transporters such as P-gp and BCRP can limit the brain penetration of CB1 receptor antagonists, and that this property could be used in the development of peripheral antagonists.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antagonistas de Receptores de Canabinoides/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Acridinas/farmacologia , Animais , Transporte Biológico/efeitos dos fármacos , Barreira Hematoencefálica , Western Blotting , Antagonistas de Receptores de Canabinoides/metabolismo , Linhagem Celular , Humanos , Cinética , Masculino , Proteínas de Neoplasias/metabolismo , Piperidinas/farmacologia , Pirazóis/farmacologia , Quinidina/farmacologia , Ratos , Ratos Wistar , Rimonabanto , Espectrometria de Massas em Tandem , Tetra-Hidroisoquinolinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...