Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Cryst Growth Des ; 19(3): 1709-1719, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30872978

RESUMO

After years of controversy over the solid state structure of the essential amino acid l-phenylalanine, four different polymorphic forms were published recently. The common form I has symmetry P21 with four molecules in the asymmetric unit (Z' = 4), similar to form III, but with a different arrangement of molecular bilayers. Form II, obtained from the hydrate at very low humidity, is unrelated to forms I and III, as is the high-density form IV. The present investigation demonstrates that this prototype aromatic amino acid has two additional high-temperature phases Ih and IIIh obtained from form I and form III above 458 and 440 K, respectively, when flipping between two alternative side-chain conformations becomes dynamic and causes pairs of molecules, initially crystallographically independent, to become equivalent above a sharp transition temperature. These abrupt and reversible phase changes occur with a reduction of Z' from 4 (low T) to 2 (high T) and modified crystal symmetry. We furthermore experienced an example of disappearing polymorph for form I which after growing form III in one of our laboratories could no longer be crystallized at room temperature. In contrast, form III crystals may be irreversibly converted to form I crystals as a result of sliding of molecular bilayers in the crystal at elevated temperature. No conversions between the high-temperature forms Ih and IIIh were found. The remarkable crystallographic results are here corroborated by Molecular Dynamics and metadynamics simulations of the form I - form III system.

2.
Pharmaceutics ; 10(2)2018 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-29783755

RESUMO

Hot-melt extrusion is an option to fabricate amorphous solid dispersions and to enhance oral bioavailability of poorly soluble compounds. The selection of suitable polymer carriers and processing aids determines the dissolution, homogeneity and stability performance of this solid dosage form. A miniaturized extrusion device (MinEx) was developed and Hypromellose acetate succinate type L (HPMCAS-L) based extrudates containing the model drugs neurokinin-1 (NK1) and cholesterylester transfer protein (CETP) were manufactured, plasticizers were added and their impact on dissolution and solid-state properties were assessed. Similar mixtures were manufactured with a lab-scale extruder, for face to face comparison. The properties of MinEx extrudates widely translated to those manufactured with a lab-scale extruder. Plasticizers, Polyethyleneglycol 4000 (PEG4000) and Poloxamer 188, were homogenously distributed but decreased the storage stability of the extrudates. Stearic acid was found condensed in ultrathin nanoplatelets which did not impact the storage stability of the system. Depending on their distribution and physicochemical properties, plasticizers can modulate storage stability and dissolution performance of extrudates. MinEx is a valuable prototyping-screening method and enables rational selection of plasticizers in a time and material sparing manner. In eight out of eight cases the properties of the extrudates translated to products manufactured in lab-scale extrusion trials.

3.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 72(Pt 4): 439-59, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27484368

RESUMO

The sixth blind test of organic crystal structure prediction (CSP) methods has been held, with five target systems: a small nearly rigid molecule, a polymorphic former drug candidate, a chloride salt hydrate, a co-crystal and a bulky flexible molecule. This blind test has seen substantial growth in the number of participants, with the broad range of prediction methods giving a unique insight into the state of the art in the field. Significant progress has been seen in treating flexible molecules, usage of hierarchical approaches to ranking structures, the application of density-functional approximations, and the establishment of new workflows and `best practices' for performing CSP calculations. All of the targets, apart from a single potentially disordered Z' = 2 polymorph of the drug candidate, were predicted by at least one submission. Despite many remaining challenges, it is clear that CSP methods are becoming more applicable to a wider range of real systems, including salts, hydrates and larger flexible molecules. The results also highlight the potential for CSP calculations to complement and augment experimental studies of organic solid forms.

4.
Faraday Discuss ; 179: 421-36, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25880981

RESUMO

DL-Norleucine is a molecular crystal exhibiting two enantiotropic phase transitions. The high temperature α ↔ γ transition has been shown to proceed through nucleation and growth [Mnyukh et al., J. Phys. Chem. Solids, 1975, 36, 127]. We focus on the low temperature ß â†” α transition in a combined computational and experimental study. The temperature dependence of the structural and energetic properties of both polymorphic forms is nearly identical. Molecular dynamics simulations and nudged elastic band calculations of the transition process itself, suggest that the transition is governed by cooperative movements of bilayers over relatively large energy barriers.


Assuntos
Norleucina/química , Cristalização , Simulação de Dinâmica Molecular , Estereoisomerismo , Temperatura
5.
J Phys Condens Matter ; 24(44): 445009, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23037889

RESUMO

We study the effects of temperature and sliding velocity on superlubricity in numerical simulations of the Frenkel-Kontorova model. We show that resonant excitations of the phonons in an incommensurate sliding body lead to an effective friction and to thermal equilibrium with energy distributed over the internal degrees of freedom. For finite temperature, the effective friction can be described well in terms of a viscous damping force, with a damping coefficient that emerges naturally from the microscopic dynamics. This damping coefficient is a non-monotonic function of the sliding velocity which peaks around resonant velocities and increases with temperature. At low velocities, it remains finite and nonzero, indicating the preservation of superlubricity in the zero-velocity limit. Finally, we propose experimental systems in which our results could be verified.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...