Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 17581, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266463

RESUMO

Our automated deep learning-based approach identifies consolidation/collapse in LUS images to aid in the identification of late stages of COVID-19 induced pneumonia, where consolidation/collapse is one of the possible associated pathologies. A common challenge in training such models is that annotating each frame of an ultrasound video requires high labelling effort. This effort in practice becomes prohibitive for large ultrasound datasets. To understand the impact of various degrees of labelling precision, we compare labelling strategies to train fully supervised models (frame-based method, higher labelling effort) and inaccurately supervised models (video-based methods, lower labelling effort), both of which yield binary predictions for LUS videos on a frame-by-frame level. We moreover introduce a novel sampled quaternary method which randomly samples only 10% of the LUS video frames and subsequently assigns (ordinal) categorical labels to all frames in the video based on the fraction of positively annotated samples. This method outperformed the inaccurately supervised video-based method and more surprisingly, the supervised frame-based approach with respect to metrics such as precision-recall area under curve (PR-AUC) and F1 score, despite being a form of inaccurate learning. We argue that our video-based method is more robust with respect to label noise and mitigates overfitting in a manner similar to label smoothing. The algorithm was trained using a ten-fold cross validation, which resulted in a PR-AUC score of 73% and an accuracy of 89%. While the efficacy of our classifier using the sampled quaternary method significantly lowers the labelling effort, it must be verified on a larger consolidation/collapse dataset, our proposed classifier using the sampled quaternary video-based method is clinically comparable with trained experts' performance.


Assuntos
COVID-19 , Aprendizado Profundo , Humanos , COVID-19/diagnóstico por imagem , Ultrassonografia/métodos , Algoritmos , Pulmão/diagnóstico por imagem
2.
Phys Med ; 83: 38-45, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33706149

RESUMO

Lung ultrasound (LUS) imaging as a point-of-care diagnostic tool for lung pathologies has been proven superior to X-ray and comparable to CT, enabling earlier and more accurate diagnosis in real-time at the patient's bedside. The main limitation to widespread use is its dependence on the operator training and experience. COVID-19 lung ultrasound findings predominantly reflect a pneumonitis pattern, with pleural effusion being infrequent. However, pleural effusion is easy to detect and to quantify, therefore it was selected as the subject of this study, which aims to develop an automated system for the interpretation of LUS of pleural effusion. A LUS dataset was collected at the Royal Melbourne Hospital which consisted of 623 videos containing 99,209 2D ultrasound images of 70 patients using a phased array transducer. A standardized protocol was followed that involved scanning six anatomical regions providing complete coverage of the lungs for diagnosis of respiratory pathology. This protocol combined with a deep learning algorithm using a Spatial Transformer Network provides a basis for automatic pathology classification on an image-based level. In this work, the deep learning model was trained using supervised and weakly supervised approaches which used frame- and video-based ground truth labels respectively. The reference was expert clinician image interpretation. Both approaches show comparable accuracy scores on the test set of 92.4% and 91.1%, respectively, not statistically significantly different. However, the video-based labelling approach requires significantly less effort from clinical experts for ground truth labelling.


Assuntos
COVID-19 , Aprendizado Profundo , Derrame Pleural , Humanos , Pulmão/diagnóstico por imagem , Derrame Pleural/diagnóstico por imagem , SARS-CoV-2 , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA